Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9099
DC FieldValueLanguage
dc.contributor.authorallZirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallUrbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBaskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2014-09-22T13:39:21Zen
dc.date.available2014-09-22T13:39:21Zen
dc.date.issued2014-08-20en
dc.identifier.urihttp://hdl.handle.net/2122/9099en
dc.description.abstractRadio-echo sounding (RES) is a radar technique widely employed in Antarctica and Greenland to define bedrock topography but, over the last decade, it has also played an important role in subglacial lake exploration and hydrogeological studies at the bedrock/ice interface. In recent studies, bedrock characterization has been improved through analysis of radar power echoes to evaluate the electromagnetic (EM) properties of the interface and allow the distinction between wet and dry interfaces. The RES received signal power depends on ice absorption and bedrock reflectivity, which is closely linked to the specific physical condition of the bedrock. In this paper, an evaluation of EM ice absorption was conducted starting from RES measurements collected over subglacial lakes in Antarctica. The idea was to calculate ice absorption starting from the radar equation in the case of subglacial lakes, where the EM reflectivity value is considered a known constant. These values were compared with those obtained from analysis of ice-core dielectric profiles from EPICA ice-core drilling data. Our analysis reveals that the ice absorption rate calculated from RES measurements has an average value of 7.2 dBkm–1, and it appears constant, independent of the subglacial lake depth in different zones of the Dome C area.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Glaciologyen
dc.relation.ispartofseries223/60 (2014)en
dc.subjectAntarctic glaciologyen
dc.subjectice physicsen
dc.subjectradio-echo soundingen
dc.subjectsubglacial lakesen
dc.titleElectromagnetic ice absorption rate at Dome C, Antarcticaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlUnreferreden
dc.description.pagenumber849-854en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniquesen
dc.identifier.doi10.3189/2014JoG13J208en
dc.relation.referencesBell RE, Studinger M, Shuman CA, Fahnestock MA and Joughin I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445(7130), 904–907 (doi: 10.1038/nature05554) Bianchi C, Forieri A and Tabacco IE (2004) Electromagnetic reflecting properties of sub-ice surfaces. Ann. Glaciol., 39, 9– 12 (doi: 10.3189/172756404781813998) Bogorodsky VV, Bentley CR and Gudmandsen PE (1985) Radioglaciology. D. Reidel, Dordrecht Cafarella L, Urbini S, Bianchi C, Zirizzotti A, Tabacco IE and Forieri A (2006) Five subglacial lakes and one of Antarctica’s thickest ice covers newly determined by radio echo sounding over the Vostok–Dome C region. Polar Res., 25(1), 69–73 (doi: 10.1111/ j.1751–8369.2006.tb00151.x) Carter SP, Blankenship DD, Peters MF, Young DA, Holt JW and Morse DL (2007) Radar-based subglacial lake classification in Antarctica. Geochem. Geophys. Geosyst., 8(3), Q03016 (doi: 10.1029/2006GC001408) Carter SP, Blankenship DD, Young DA and Holt JW (2009) Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica. J . Glaciol., 55(194), 1025–1040 (doi: 10.3189/ 002214309790794931) Corr H, Moore JC and Nicholls KW (1993) Radar absorption due to impurities in Antarctic ice. Geophys. Res. Lett., 20(11), 1071– 1074 (doi: 10.1029/93GL01395) Daniels (1996) [[AUTHOR: please provide full reference]] Eisen O, Wilhelms F, Steinhage D and Schwander J (2006) Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity. J. Glaciol., 52 (177), 299–310 (doi: 10.3189/172756506781828674) EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628 (doi: 10.1038/ nature02599) Fujita S, Matsuoka T, Ishida T, Matsuoka K and Mae S (2000) A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In Hondoh T ed. Physics of ice core records. Hokkaido University Press, Sapporo, 185–212 Fujita S and 7 others (2012) Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. Cryosphere, 6(5), 1203–1219 (doi: 10.5194/tc-6-1203-2012) Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2014) Italian radio echo sounding data in Antarctica [IRES GIS database] http://labtel2.rm.ingv.it/antarctica/ [[AUTHOR: Please supply exact date]] Jacobel RW, Lapo KE, Stamp JR, Youngblood BW, Welch BC and Bamber JL (2010) A comparison of basal reflectivity and ice velocity in East Antarctica. Cryosphere, 4(4), 447–452 (doi: 10.5194/tc-4-447-2010) Kapitsa AP, Ridley JK, Robin GdeQ, Siegert MJ and Zotikov I (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature, 381(6584), 684–686 (doi: 10.1038/ 381684a0) Kulessa B (2007) A critical review of the low-frequency electrical properties of ice sheets and glaciers. J. Environ. Eng. Geophys., 12(1), 23–36 (doi: 10.2113/JEEG12.1.23) 3B2 v8.07j/W 20th August 2014 Article ref 13J208 Typeset by Sukie Proof no 1 Zirizzotti and others: Electromagnetic ice absorption rate at Dome C 5 MacGregor JA, Winebrenner DP, Conway H, Matsuoka K, Mayewski PA and Clow GD (2007) Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data. J. Geophys. Res., 112(F3), F03008 (doi: 10.1029/2006JF000717) MacGregor JA, Matsuoka K, Waddington ED, Winebrenner DP and Pattyn F (2012) Spatial variation of englacial radar attenuation: modeling approach and application to the Vostok flowline. J. Geophys. Res., 117(F3), F03022 (doi: 10.1029/2011JF002327) Matsuoka K (2011) Pitfalls in radar diagnosis of ice-sheet bed conditions: lessons from englacial attenuation models. Geophys. Res. Lett., 38(5), L05505 (doi: 10.1029/2010GL046205) Matsuoka K, MacGregor JA and Pattyn F (2012) Predicting radar attenuation within the Antarctic ice sheet. Earth Planet. Sci. Lett., 359–360, 173–183 (doi: 10.1016/j.epsl.2012.10.018) Ma¨tzler C and Wegmu¨ ller U (1987) Dielectric properties of freshwater ice at microwave frequencies. J. Appl. Phys., 20 (12), 1623–1630 (doi: 10.1088/0022-3727/20/12/013) Oswald GKA and Gogineni SP (2008) Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol., 54(184), 94–106 (doi: 10.3189/002214308784409107) Paden J, Allen CT, Gogineni S, Jezek KC, Dahl-Jensen D and Larsen LB (2005) Wideband measurements of ice sheet attenuation and basal scattering. IEEE Geosci. Remote Sens. Lett., 2(2), 164–168 (doi: 10.1109/LGRS.2004.842474) Paden J, Akins T, Dunson D, Allen C and Gogineni S (2010) Icesheet bed 3-D tomography. J. Glaciol., 56(195), 3–11 (doi: 10.3189/002214310791190811) Peters ME, Blankenship DD and Morse DL (2005) Analysis techniques for coherent airborne radar sounding: application to West Antarctic ice streams. J. Geophys. Res., 110(B6), B06303 (doi: 10.1029/2004JB003222) Plewes LA and Hubbard B (2001) A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geogr., 25(2), 203–236 (doi: 10.1177/030913330102500203) Re´my F, Testut L, Legre´sy B, Forieri A, Bianchi C and Tabacco IE (2003) Lakes and subglacial hydrological networks around Dome C, East Antarctica. Ann. Glaciol., 37, 252–256 (doi: 10.3189/172756403781815799) Skolnik MI (1990) Radar handbook, 2nd edn. McGraw-Hill, New York Stauffer B, Flu¨ckiger J, Wolff EW and Barnes PRF (2004) The EPICA deep ice cores: first results and perspectives. Ann. Glaciol., 39, 93–100 (doi: 10.3189/172756404781814500) Tabacco E, Cianfarra P, Forieri A, Salvini F and Zirizzotti A (2006) Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int., 165(3), 1029–1040 (doi: 10.1111/j.1365- 246X.2006.02954.x) Ulaby FT, Moore RK and Fung AK (1981) Microwave remote sensing, active and passive. Vol. 1. Fundamentals and radiometry. Addison-Wesley, Reading, MA Wingham DJ, Siegert MJ, Shepherd A and Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440 (7087), 1033–1036 (doi: 10.1038/nature04660) Wolff E, Barnes P and Mulvaney R (2004) EPICA Dome C Core EDC99 dielectric profiling data. (IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2004- 037) National Oceanic and Atmospheric Administration (NOAA)/National Geophysical Data Center (NGDC) Paleoclimatology Program, Boulder, CO ftp://ftp.ncdc.noaa.gov/pub/ data/paleo/icecore/antarctica/epica_domec/edc99_dep.txt Zirizzotti A, Baskarades JA, Bianchi C, Sciacca U, Tabacco IE and Zuccheretti E (2008) Glacio RADAR system and results. In Proceedings of IEEE Radar Conference (RADAR ’08), 26–30 May 2008, Rome, Italy. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1–3 (doi: 10.1109/RADAR. 2008.4720993) Zirizzotti and 6 others (2010) Dry–wet bedrock interface detection by radio echo sounding measurements. IEEE Trans. Geosci. Remote Sens., 48(5), 2343–2348 (doi: 10.1109/TGRS. S009.2038900) Zirizzotti A, Cafarella L and Urbini S (2012) Ice and bedrock characteristics underneath Dome C (Antarctica) from radio echo sounding data analysis. IEEE Trans. Geosci. Remote Sens., 50(1), 37–43 (doi: 10.1109/TGRS.2011.2160551)en
dc.description.obiettivoSpecifico7A. Geofisica di esplorazioneen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0022-1430en
dc.relation.eissn1727-5652en
dc.contributor.authorZirizzotti, A.en
dc.contributor.authorCafarella, L.en
dc.contributor.authorUrbini, S.en
dc.contributor.authorBaskaradas, J. A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSAP, School of Electrical and Electronics Engineering-
crisitem.author.orcid0000-0001-7586-9219-
crisitem.author.orcid0000-0003-2005-8923-
crisitem.author.orcid0000-0002-8053-4197-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
zirizzotti2014_ice absorption at domec.pdf1.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s) 5

935
checked on Apr 17, 2024

Download(s) 50

135
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric