Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9048
DC FieldValueLanguage
dc.contributor.authorallMeade, F.; Department of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Swedenen
dc.contributor.authorallTroll, V.; Department of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Swedenen
dc.contributor.authorallEllam, R. M.; Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF Scotland, UK.en
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFont, L.; Department of Petrology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlandsen
dc.contributor.authorallDonaldson, C. H.; School of Geography and Geosciences, University of St Andrews, North Street, St Andrews, KY16 9AL Scotland, UK.en
dc.contributor.authorallKlonowska, I.; Department of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Swedenen
dc.date.accessioned2014-07-09T09:34:30Zen
dc.date.available2014-07-09T09:34:30Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/9048en
dc.description.abstractThe origin of bimodal (mafic–felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose ‘progressively inhibited crustal assimilation’ (PICA) as a major cause of bimodality in continental volcanism.en
dc.description.sponsorshipIrish Research Council for Science, Engineering and Technology (IRCSET) Science Foundation Ireland basic researchen
dc.language.isoEnglishen
dc.publisher.name2014 Macmillan Publishers Limiteden
dc.relation.ispartofNature Communicationsen
dc.relation.ispartofseries/5 (2014)en
dc.subjectBimodal magmatismen
dc.subjectcrustal contaminationen
dc.subjectisotope geochemistryen
dc.subjectexperimental petrologyen
dc.titleBimodal magmatism produced by progressively inhibited crustal assimilationen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber4199en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.identifier.doi10.1038/ncomms5199en
dc.relation.references1. Bunsen, R. W. U¨ ber die Processe der vulkanischen Gesteinsbildungen Islands. Ann. Phys. 83, 197–272 (1851). 2. Daly, R. A. The Geology of Ascension Island. Proc. Am. Acad. Arts Sci. 60, 1–80 (1925). 3. Charlier, B. et al. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology 39, 907–910 (2011). 4. Melekhova, E., Annen, C. & Blundy, J. Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat. Geosci. 6, 385–390 (2013). 5. Thompson, G., Smith, I. & Malpas, J. Origin of oceanic phonolites by crystal fractionation and the problem of the Daly gap: an example from Rarotonga. Contrib. Mineral Petrol. 142, 336–346 (2001). 6. Ayalew, D. & Yirgu, G. Crustal contribution to the genesis of Ethiopian plateau rhyolitic ignimbrites: basalt and rhyolite geochemical provinciality. J. Geol. Soc. Lond. 160, 47–56 (2003). 7. Sigurdsson, H. Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature 269, 25–28 (1977). 8. Bonnefoi, C. C., Provost, A. & Albarede, F. The ‘Daly gap’ as a magmatic catastrophe. Nature 378, 270–272 (1995). 9. Patchett, P. J. Thermal effects of basalt on continental crust and crustal contamination of magmas. Nature 283, 559–561 (1980). 10. Huppert, H. E. & Sparks, R. S. J. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol. 29, 599–624 (1988). 11. Annen, C. Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships. Tectonophysics 500, 3–10 (2011). 12. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006). 13. Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, C. J. & Leat, P. T. in Volcanic Rifted Margins (eds Menzies, M. A., Klemperer, S. L., Ebinger, C. J. & Baker, J.) (Geological Society of America, 2002). 14. Saunders, A. D. et al. Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem. Geol. 241, 282–318 (2007). 15. Emeleus, C. H. & Bell, B. R. British Regional Geology: The Palaeogene Volcanic Districts of Scotland 4th edn (British Geological Survey, 2005). 16. Dickin, A. P. et al. Crustal contamination and the granite problem in the British Tertiary Volcanic Province. Phil. Trans. R. Soc. Lond. A 310, 755–780 (1984). 17. Troll, V. R. et al. Sr and Nd isotope evidence for successive crustal contamination of Slieve Gullion ring-dyke magmas, Co. Armagh, Ireland. Geol. Mag. 142, 659–668 (2005). 18. Thompson, R. N. Askja 1875, Skye 56Ma: basalt-triggered, Plinian, mixedmagma eruptions during the emplacement of the Western Redhills granites, Isle-of-Skye, Scotland. Geol. Rundsch. 69, 245–262 (1980). 19. Kerr, A. C., Kent, R. W., Thomson, B. A., Seedhouse, J. K. & Donaldson, C. H. Geochemical evolution of the Tertiary Mull volcano, Western Scotland. J. Petrol. 40, 873–908 (1999). 20. Marshall, L. A. & Sparks, R. S. J. Origin of some mixed-magma and net-veined ring intrusions. J. Geol. Soc. Lond. 141, 171–182 (1984). 21. Meyer, R. et al. Trace element and isotope constraints on crustal anatexis by upwelling mantle melts in the North Atlantic Igneous Province: an example from the Isle of Rum, NW Scotland. Geol. Mag. 146, 382–399 (2009). 22. Mitchell, W. I., Cooper, M. R., Hards, V. L. & Meighan, I. G. An occurrence of silicic volcanic rocks in the early Palaeogene Antrim Lava Group of Northern Ireland. Scot. J. Geol. 35(Part 2), 179–185 (1999). 23. Anderson, T. B. & Oliver, G. J. H. Xenoliths of Iapetus Suture mylonites in County Down lamprophyres, Northern Ireland. J. Geol. Soc. 153, 403–407 (1996). 24. van den Berg, R., Daly, J. S. & Salisbury, M. H. Seismic velocities of granulitefacies xenoliths from Central Ireland: implications for lower crustal composition and anisotropy. Tectonophysics 407, 81–99 (2005). 25. Chew, D. M. & Strachan, R. A. in New Perspectives on the Caledonides of Scandanavia and Related Areas Vol. 390 (eds Corfu, F., Gasser, D. & Chew, D. M.) (Geological Society, Special Publications, 2013). 26. O’Rourke, H. B., Daly, J. S., van den Berg, R., Whitehouse, M. J. & Lam, R. Lower crustal xenoliths from the iapetus suture zone in ireland: isotopic evidence for juvenile crustal addition during the Caledonian Orogeny. Geophys. Res. Abstr. 14, EGU2012–EGU4418 (2012). 27. Le Bas, M. J. The petrology of the layered basic rocks of the Carlingford complex, County Louth. R. Soc. Edin. Earth 64, 169–200 (1960). 28. Le Bas, M. J. On the origin of the Tertiary granophyres of the Carlingford complex, Ireland. Proc. R. Irish Acad. 65, 325–337 (1967). 29. O’Driscoll, B. Magmatic layering and magnetic fabrics in the Palaeogene Carlingford Later Gabbros, Co. Louth, Ireland. Irish J. Earth Sci. 24, 37–50 (2006). 30. Le Bas, M. J. Cone-sheets as a mechanism of uplift. Geol. Mag. 108, 373–376 (1971). 31. Halsall, T. J. The Minor Intrusions and Structure of the Carlingford Complex, Eire. PhD thesis (University of Leicester, 1974). 32. Burchardt, S., Troll, V. R., Mathieu, L., Emeleus, H. C. & Donaldson, C. H. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber. Sci. Rep. 3, 2891 (2013). 33. Reay, D. M. in The Geology of Northern Ireland—Our Natural Foundation (ed. Mitchell, W. I.) (Geological Survey of Northern Ireland, 2004). 34. Allen, P. A. et al. in Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration Vol. 196 (eds Dore´, A. G., Cartwright, J. A., Turner, J. P. & White, N.) (Geological Society, Special Publications, 2002). 35. Furman, T., Frey, F. A. & Meyer, P. S. Petrogenesis of evolved basalts and rhyolites at Austurhorn, southeastern Iceland: the role of fractional crystallization. J. Petrol. 33, 1405–1445 (1992). 36. Duffield, W. A. & Ruiz, J. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems. J. Volcanol. Geoth. Res. 87, 7–13 (1998). 37. Harris, N. B. W. & Inger, S. Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol. 110, 46–56 (1992). 38. Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005). 39. Arzi, A. A. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–184 (1978). 40. Sawyer, E. W. Melt segregation in the continental crust. Geology 22, 1019–1022 (1994). 41. DePaolo, D. J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Planet. Sci. Lett. 53, 189–202 (1981). 42. Langmuir, C. H., Vocke, R. D., Hansan, G. N. & Hart, S. R. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392 (1978). 43. Reiners, P. W., Nelson, B. K. & Ghiorso, M. S. Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23, 563–566 (1995). 44. Davidson, J. P. & Tepley, F. I. Recharge in volcanic systems; evidence from isotope profiles of phenocrysts. Science 275, 825–829 (1997). 45. Putirka, K. D. Igneous thermometers and barometers based on plagioclaseþliquid equilibria: Tests of some existing models and new calibrations. Am. Mineral. 90, 336–346 (2005). 46. Putirka, K. D. in Reviews in Mineralogy and Geochemistry Vol. 69 (eds Putirka, K. D. & Tepley, F.) 61–120 (Mineralogical Society of America, 2008). 47. Kerr, A. C., Kempton, P. D. & Thompson, R. N. Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from Mull Tertiary lava succession, N.W. Scotland. Contrib. Mineral. Petrol. 119, 142–154 (1995). 48. Bindeman, I. et al. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24, 227–232 (2012). 49. Lowenstern, J. B., Evans, W. C., Bergfeld, D. & Hunt, A. G. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature 506, 355–358 (2014). 50. Abratis, M., Schmincke, H.-U. & Hansteen, T. H. Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int. J. Earth Sci. 91, 562–582 (2002). 51. Stephens, W. E. & Calder, A. Analysis of non-organic elements in plant foliage using polarised X-ray fluorescence spectrometry. Anal. Chim. Acta 527, 89–96 (2004). 52. Olive, V., Ellam, R. M. & Wilson, L. A protocol for the determination of the rare earth elements at picomole level in rocks by ICP-MS: results on geological reference materials USGS PCC-1 and DTS-1. Geostandard. Newslett. 25, 219–228 (2001).53. Raczek, I., Stoll, B., Hofmann, A. W. & Jochum, K. P. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, AGV- 1, AGV-2, DTS-1, DTS-2, GSP-1 and GPS-2 by ID-TIMS and MIC-SSMS. Geostandard. Newslett. 25, 77–86 (2001). 54. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995). 55. Ellam, R. M. New constraints on the petrogenesis of the Nuanetsi picrite basalts from Pb and Hf isotope data. Earth Planet. Sci. Lett. 245, 153–161 (2006). 56. Charlier, B. L. A. et al. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chem. Geol. 232, 114–133 (2006). 57. Holland, T. J. B. & Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343 (1998). 58. Holland, T. J. B. & Powell, R. Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J. Petrol. 42, 673–683 (2001). 59. White, R. W., Powell, R. & Holland, T. J. B. Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J. Metamorph. Geol. 19, 139–153 (2001). 60. Saunders, A. D., Norry, M. J. & Tarney, J. Origin of MORB and chemicallydepleted mantle reservoirs; trace element constraints. J. Petrol. Special Vol. 1 415–445 (1988). 61. Ellam, R. M. & Stuart, F. M. The sub-lithospheric source of North Atlantic basalts; evidence for, and significance of, a common end-member. J. Petrol. 41, 919–932 (2000). 62. Gamble, J. A. The geochemistry and petrogenesis of dolerites and gabbros from the Tertiary central volcanic complex of Slieve Gullion, North East Ireland. Contrib. Mineral. Petrol. 69, 5–19 (1979). 63. Powell, R. Inversion of the assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites. J. Geol. Soc. Lon. 141, 447–452 (1984). 64. Meighan, I. G., McCormick, A. G., Gibson, D., Gamble, J. A. & Graham, I. J. in Early Tertiary Volcanism and the Opening of the NE Atlantic Vol. 39 (eds Morton, A. C. & Parson, L. M.) (Geological Society, Special Publications, 1988). 65. Evans, A. L., Fitch, F. J. & Miller, J. A. Potassium-argon age determinations on some British Tertiary igneous rocks. J. Geol. Soc. Lon. 129, 419–443 (1973). 66. Le Bas, M. J. Trace elements in the gabbros, olivines, augites and magnetites of the Carlingford complex, Ireland. Proc. R. Irish Acad. 69, 217–243 (1970). 67. McCormick, A. G. Isotopic studies on the Eastern Mourne Centre and other Tertiary acid igneous rocks of North East Ireland. PhD thesis (Queen’s Univ. Belfast, 1989). 68. O’Connor, P. J. in Early Tertiary volcanism and the Opening of the NE Atlantic Vol. 39 (eds Morton, A. & Parson, L. M.) (Geological Society, Special Publications, 1988). 69. Meighan, I. G., Fallick, A. E. & McCormick, A. G. Anorogenic granite magma genesis: new isotopic data for the southern sector of the British Tertiary Igneous Province. R. Soc. Edin. Earth 83, 227–233 (1992). 70. O’Connor, P. J. Rb-Sr whole rock isochron for the Newry granodiorite, N. E. Ireland. Sci. Proc. R. Dublin Soc. A5, 407–413 (1975).en
dc.description.obiettivoSpecifico1V. Storia e struttura dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorMeade, F.en
dc.contributor.authorTroll, V.en
dc.contributor.authorEllam, R. M.en
dc.contributor.authorFreda, C.en
dc.contributor.authorFont, L.en
dc.contributor.authorDonaldson, C. H.en
dc.contributor.authorKlonowska, I.en
dc.contributor.departmentDepartment of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Swedenen
dc.contributor.departmentDepartment of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Swedenen
dc.contributor.departmentScottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF Scotland, UK.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Petrology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlandsen
dc.contributor.departmentSchool of Geography and Geosciences, University of St Andrews, North Street, St Andrews, KY16 9AL Scotland, UK.en
dc.contributor.departmentDepartment of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Swedenen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Sweden-
crisitem.author.deptUppsala University-
crisitem.author.deptSUERC, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Petrology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands-
crisitem.author.deptSchool of Geography and Geosciences, University of St Andrews, North Street, St Andrews, KY16 9AL Scotland, UK.-
crisitem.author.deptDepartment of Earth Sciences, CEMPEG, Uppsala University, Villava¨gen 16, 752 36 Uppsala, Sweden-
crisitem.author.orcid0000-0003-1891-3396-
crisitem.author.orcid0000-0002-2320-8096-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Biomodal Magmmatism_2014 (1).pdfmain article4.31 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

18
checked on Feb 10, 2021

Page view(s) 5

421
checked on Apr 20, 2024

Download(s) 50

99
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric