Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9047
DC FieldValueLanguage
dc.contributor.authorallHiemer, S.; Swiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.authorallWoessner, J.; Swiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.authorallBasili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDanciu, L.; Swiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.authorallGiardini, D.; Swiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.authorallWiemer, S.; Swiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.date.accessioned2014-07-09T09:32:05Zen
dc.date.available2014-07-09T09:32:05Zen
dc.date.issued2014-08en
dc.identifier.urihttp://hdl.handle.net/2122/9047en
dc.description.abstractWe present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg–Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project ‘Seismic HAzard haRmonization in Europe’ (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE’s area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model’s forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10–20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.en
dc.description.sponsorshipEC-Research FP7-projects, SHARE, under grant agreement No. 226967 and NERA, under grant agreement No. 262330en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/198 (2014)en
dc.subjectProbabilistic forecastingen
dc.subjectStatistical seismologyen
dc.subjectEuropeen
dc.titleA smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1159-1172en
dc.identifier.URLhttp://gji.oxfordjournals.org/content/198/2/1157.shorten
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1093/gji/ggu186en
dc.relation.referencesAki, K. & Richards, P.G., 2002. Quantitative Seismology, 2nd edn, University Science Books. Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M.M. & Boschi, E., 2008. The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology, Tectonophysics, 453(1–4), 20–43. Basili, R., Kastelic, V. & Valensise, G., 2009. Tutorial Series. Guidelines for Compiling Records of the Database of Individual Seismogenic Sources,Version 3, Rapporti Tecnici INGV, 108, 20 pp., http://istituto.ingv.it/l-ingv/produzione-scientifica/rapporti-tecnici-ingv/rapporti-tecnici-2009. Basili, R. et al., 2013. The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE, http://diss.rm.ingv.it/share-edsf/. Bilek, S.L. & Lay, T., 1999. Rigidity variations with depth along inter-plate megathrust faults in subduction zones, Nature, 400(6743), 443–446. Burkhard, M. & Gr¨unthal, G., 2009. Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b), Swiss J. Geosci., 102(1), 149–188. Burrato, P., Vannoli, P., Fracassi, U., Basili, R. & Valensise, G., 2012. Is blind faulting truly invisible? Tectonic-controlled drainage evolution in the epicentral area of the May 2012, Emilia-Romagna earthquake sequence (northern Italy), Ann. Geophys., 55(4), 525–531. Camelbeeck, T. et al., 2007. Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues, Geol. Soc. Am. Spec. Papers, 425, 193–224. Cao, T., Petersen, M. & Reichle, M., 1996. Seismic hazard estimate from background seismicity in southern California, Bull. seism. Soc. Am., 86(5), 1372–1381. Cornell, C., 1968. Engineering seismic risk analysis, Bull. seism. Soc. Am., 58(5), 1583–1606. Eberhard, D. a.J., Zechar, J.D. & Wiemer, S., 2012. A prospective earthquake forecast experiment in the western Pacific, Geophys. J. Int., 190(3), 1579–1592. England, P. & Jackson, J., 2011. Uncharted seismic risk, Nature Geoscience, 4(6), 348–349. F¨ah, D. et al., 2006. The earthquake of 250 a.d. in Augusta Raurica, A real event with a 3D site-effect?, J. Seismol., 10(4), 459–477. Field, E.H., 2007. Overview of the working group for the development of regional earthquake likelihood models (RELM), Seism. Res. Lett., 78(1),7–16. Field, E.H. & Page, M.T., 2011. Estimating earthquake-rupture rates on a fault or fault system, Bull. seism. Soc. Am., 101(1), 79–92. Field, E.H. et al., 2009. The uniform California earthquake rupture forecast, Version 2 (UCERF2), Bull. seism. Soc. Am., 99(4), 2053–2107. Frankel, A.D., 1995. Mapping seismic hazard in the central and eastern United States, Seism. Res. Lett., 66(4), 8–21. Giardini, D. et al., 2013. Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:10.12686/SED-00000001-SHARE. Giardini, D., Woessner, J. & Danciu, L., 2014. The 2013 European seismic hazard model, EOS, Trans. Am. geophys. Un., submitted. Gr¨unthal, G., 1985. The up-dated earthquake catalogue for the German Democratic Republic and adjacent areas—statistical data characteristicsand conclusions for hazard assessment, in Proceedings of the 3rd International Symposium on the Analysis of Seismicity and Seismic Risk, Liblice/Czechoslovakia, 17–22 June 1985, pp. 19–25. Gr¨unthal, G. & Wahlstr¨om, R., 2012. The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium, J. Seismol., 16(3), 535–570. Gr¨unthal, G., Wahlstr¨om, R. & Stromeyer, D., 2013. The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC), J. Seismol., 17(4), 1339–1344. Haller, K.M. & Basili, R., 2011. Developing seismogenic source models based on geologic fault data, Seism. Res. Lett., 82(4), 519–525. Helmstetter, a. & Werner, M.J., 2012. Adaptive spatiotemporal smoothing of seismicity for long-term earthquake forecasts in California, Bull. seism. Soc. Am., 102(6), 2518–2529. Helmstetter, A., Kagan, Y.Y. & Jackson, D.D., 2007. High-resolution time-independent grid-based forecast for M > = 5 earthquakes in California, Seism. Res. Lett., 78(1), 78–86. Hiemer, S., Jackson, D.D., Wang, Q., Kagan, Y.Y., Woessner, J., Zechar, J.D. & Wiemer, S., 2013. A stochastic forecast of California earthquakes based on fault slip and smoothed seismicity, Bull. seism. Soc. Am., 103(2A), 799–810. Hinzen, K.-G. & Reamer, S.K., 2007. Seismicity, seismotectonics, and seismic hazard in the northern Rhine area, Geol. Soc. Am. Spec. Papers, 425,225–242. Jackson, D.D. & Kagan, Y.Y., 1999. Testable earthquake forecasts for 1999, Seism. Res. Lett., 70(4), 393–403. Jordan, T.H., 2006. Earthquake predictability, brick by brick, Seism. Res. Lett., 77(1), 3–6. Kafka, A.L., 2007. Does seismicity delineate zones where future large earthquakes are likely to occur in intraplate environments?, Geol. Soc. Am. Spec. Papers, 425, 35–48. Kagan, Y.Y. & Jackson, D.D., 1994. Long-term probabilistic forecasting of earthquakes, J. geophys. Res., 99(B7), 13 685–13 700. Kijko, A. & Smit, A., 2012. Extension of the Aki-Utsu b-value estimator for incomplete catalogs, Bull. seism. Soc. Am., 102(3), 1283–1287. Kwiatek, G., Plenkers, K., Nakatani, M., Yabe, Y. & Dresen, G., 2010. Frequency-magnitude characteristics down to magnitude -4.4 for induced seismicity recorded at Mponeng Gold Mine, South Africa, Bull. seism. Soc. Am., 100(3), 1165–1173. Lapajne, J., Motnikar, B.S. & Zupancic, P., 2003. Probabilistic seismic hazard assessment methodology for distributed seismicity, Bull. seism. Soc. Am., 93(6), 2502–2515. Liu, M., Stein, R.S. & Wang, H., 2011. 2000 years of migrating earthquakes in North China: how earthquakes in mid-continents differ from those at plate boundaries, Lithosphere, 3, 128–132. Main, I., 2000. Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: fact or artifact?, Bull. seism. Soc. Am., 90(1), 86–97. Meghraoui, M., Delouis, B., Ferry, M., Giardini, D., Huggenberger, P., Spottke, I. & Granet, M., 2001. Active normal faulting in the upper Rhine graben and paleoseismic identification of the 1356 Basel earthquake, Science, 293(5537), 2070–2073. Petersen, M.D. et al., 2008. Documentation for the 2008 update of the United States national seismic hazard maps, USGS Open-File Rept. 2008-1128,p. 60 pp. (11 appendices). Rhoades, D.A. & Stirling, M.W., 2012. An earthquake likelihood model based on proximity to mapped faults and cataloged earthquakes, Bull. seism. Soc. Am., 102(4), 1593–1599. Rhoades, D.A., Schorlemmer, D., Gerstenberger, M.C., Christophersen, A., Zechar, J.D. & Imoto, M., 2011. Efficient testing of earthquake forecasting models, Acta Geophys., 59(4), 728–747. Schorlemmer, D., Zechar, J.D., Werner, M.J., Field, E.H., Jackson, D.D. & Jordan, T.H., 2010. First results of the regional earthquake likelihood models experiment, Pure appl. Geophys., 167(8-9), 859–876. Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Chapman and Hall. Stein, R.S., Liu, M., Calais, E. & Li, Q., 2009. Mid-continent earthquakes as a complex system, Seism. Res. Lett., 80(4), 551–553.Stirling, M. & Gerstenberger, M., 2010. Ground motion-based testing of seismic hazard models in New Zealand, Bull. seism. Soc. Am., 100(4), 1407–1414. Stirling, M.W. et al., 2012. National seismic hazard model for New Zealand: 2010 update, Bull. seism. Soc. Am., 102(4), 1514–1542. Stock, C. & Smith, E. G.C., 2002. Adaptive kernel estimation and continuous probability representation of historical earthquake catalogs, Bull. seism. Soc. Am., 92(3), 904–912. Strasser, F.O., Arango, M.C. & Bommer, J.J., 2010. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude, Seism. Res. Lett., 81(6), 941–950. Stucchi, M. et al., 2012. The SHARE European Earthquake Catalogue (SHEEC) 1000–1899, J. Seismol., 17(2), 523–544. Swafford, L. & Stein, R.S., 2007. Limitations of the short earthquake record for seismicity and seismic hazard studies, Geol. Soc. Am. Spec. Papers, 425, 49–58. Wang, Q., Jackson, D.D. & Kagan, Y.Y., 2011. California earthquake forecasts based on smoothed seismicity: model choices, Bull. seism. Soc. Am., 101(3), 1422–1430. Weichert, D., 1980. Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. seism. Soc. Am., 70(4), 1337–1346. Werner, M.J., Zechar, J.D., Marzocchi, W. & Wiemer, S., 2010. Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts, Ann. Geophys., 53(3), 11–30. Werner, M.J., Helmstetter, A., Jackson, D.D. & Kagan, Y.Y., 2011. High-resolution long-term and short-term earthquake forecasts for California,Bull. seism. Soc. Am., 101(4), 1630–1648. Wiemer, S., Garc´ıa-Fern´andez, M. & Burg, J.-P., 2009a. Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d), Swiss J. Geosci., 102(1), 189–209. Wiemer, S., Giardini, D., F¨ah, D., Deichmann, N. & Sellami, S., 2009b. Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties, J. Seismol., 13(4), 449–478. Woo, G., 1996. Kernel estimation methods for seismic hazard area source modeling, Bull. seism. Soc. Am., 86(2), 353–362. Zechar, J.D., Gerstenberger, M.C. & Rhoades, D.A., 2010a. Likelihood-Based Tests for Evaluating Space-Rate-Magnitude Earthquake Forecasts, Bull. seism. Soc. Am., 100(3), 1184–1195. Zechar, J.D., Schorlemmer, D., Liukis, M., Yu, J., Euchner, F., Maechling, P. & Jordan, T.H., 2010b. The Collaboratory for the Study of Earthquake Predictability perspective on computational earthquake science, Concurr. Comput.: Pract. Exper., 22(12), 1836–1847. Zechar, J.D., Schorlemmer, D., Werner, M.J., Gerstenberger, M.C., Rhoades, D.a. & Jordan, T.H., 2013. Regional earthquake likelihood models I: first-order results, Bull. seism. Soc. Am., 103(2A), 787–798.en
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorHiemer, S.en
dc.contributor.authorWoessner, J.en
dc.contributor.authorBasili, R.en
dc.contributor.authorDanciu, L.en
dc.contributor.authorGiardini, D.en
dc.contributor.authorWiemer, S.en
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerlanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptSwiss Seismological Service, ETH Zurich, Institute of Geophysics, CH-8092 Zurich, Switzerland-
crisitem.author.deptETH, Zurich,Switzerland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptETH Zurich, Switzerland-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.orcid0000-0003-4086-8755-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2014_Hiemer_etal_GJI.pdfMain published article7.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s) 20

299
checked on Apr 17, 2024

Download(s) 50

76
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric