Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8961
DC FieldValueLanguage
dc.contributor.authorallRuch, J.; Dipartimento di Scienze, Università Roma Tre, Largo S.L. Murialdo 1, Rome IT-00146, Italyen
dc.contributor.authorallPepe, S.; National Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.authorallCasu, F.; National Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.authorallSolaro, G.; National Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.authorallPepe, A.; National Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.authorallAcocella, V.; Dipartimento di Scienze, Università Roma Tre, Largo S.L. Murialdo 1, Rome IT-00146, Italy.en
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSansosti, E.; National Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.date.accessioned2014-03-03T13:14:57Zen
dc.date.available2014-03-03T13:14:57Zen
dc.date.issued2013-08-13en
dc.identifier.urihttp://hdl.handle.net/2122/8961en
dc.description.abstractFlank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.en
dc.description.sponsorshipThis work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/118(2013)en
dc.subjectVolcano flank instabilityen
dc.subjectPernicana faulten
dc.subjectEtnaen
dc.titleSeismo-tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber4398-4409en
dc.identifier.URLhttp://onlinelibrary.wiley.com/doi/10.1002/jgrb.50281/abstracten
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneousen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.99. General or miscellaneousen
dc.subject.INGV05. General::05.08. Risk::05.08.99. General or miscellaneousen
dc.identifier.doi10.1002/jgrb.50281, 2013en
dc.relation.referencesAcocella, V., and M. Neri (2003), What makes flank eruptions? the 2001 Etna eruption and the possible triggering mechanisms, Bull. Volcanol., 65, 517–529, doi:10.1007/s00445-003-0280-3. Acocella, V., and M. Neri (2005), Structural features of an active strike-slip fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol., 27(2), 343–355, doi:10.1016/j.jsg.2004.07.006. Acocella, V., and M. Neri (2009), Dike propagation in volcanic edifices: overview and possible developments. Special Issue: Understanding stress and deformation in active volcanoes, edited by A. Gudmundsson, V. Acocella, S. Vinciguerra. Tectonophysics, 471, 67–77, doi:10.1016/j. tecto.2008.10.002. Acocella, V., and G. Puglisi (2013), How to cope with volcano flank dynamics? A conceptual model behind possible scenarios for Mt. Etna, J. Volcanol. Geotherm. Res., 251, 137–148, doi:10.1016/j.jvolgeores.2012.06.016. Acocella, V., B. Behncke, M. Neri, and S. D’Amico (2003), Link between major flank slip and eruptions at Mt. Etna (Italy), Geophys. Res. Lett., 30(24), 2286, doi:10.1029/2003GL018642. Aloisi, M., A. Bonaccorso, and S. Gambino (2006), Imaging composite dike propagation (Etna, 2002 case), J. Geophys. Res., 111, B06404, doi:10.1029/ 2005JB003908. Alparone, S., O. Cocina, S. Gambino, A. Mostaccio, S. Spampinato, T. Tuvè, and A. Ursino (2013), Seismological features of the Pernicana–Provenzana Fault System (Mt. Etna, Italy) and implications for the dynamics of northeastern flank of the volcano, J. Volcanol. Geotherm. Res., 251, 16–26, doi:10.1016/j.jvolgeores.2012.03.010. RUCH ET AL.: SEISMO-TECTONIC BEHAVIOR AT ETNA 4407 Azzaro, R. (1997), Seismicity and active tectonics along the Pernicana Fault, Mt. Etna (Italy), Acta Vulcanol., 9, 7–14. Azzaro, R., M. Mattia, and G. Puglisi (2001), Fault creep and kinematics of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic observations and their tectonic significance, Tectonophysics, 333(3-4), 401–415, doi:10.1016/S0040-1951(01)00021-X. Barreca, G.,A. Bonforte, and M. Neri (2012), ApilotGIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation, J. Volcanol. Geotherm. Res., 251, 170–186, doi:10.1016/j.jvolgeores.2012.08.013. Battaglia, M.,M. Di Bari, V. Acocella, and M.Neri (2011), Dike emplacement and flank instability atMount Etna: Constraints froma poro-elastic-model of flank collapse, J. Volcanol. Geotherm. Res., 199, 153–164, doi:10.1016/j. jvolgeores.2010.11.005. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms, IEEE Geosci. Remote Sens. Lett., 40, 2375–2383, doi:10.1109/TGRS.2002.803792. Bonaccorso, A. (1999), The March 1981 Mount Etna eruption inferred through ground deformation modelling, Phys. Earth Planet. Inter., 112(1-2), 125–136, doi:10.1016/S0031-9201(99)00003-5. Bonaccorso, A., A. Bonforte, F. Guglielmino, M. Palano, and G. Puglisi (2006), Composite ground deformation pattern forerunning the 2004–2005 Mount Etna eruption, J. Geophys. Res., 111, B12207, doi:10.1029/2005JB004206. Bonaccorso, A., G. Currenti, and C. Del Negro (2013), Interaction of volcano- tectonic fault with magma storage, intrusion and flank instability: A thirty years study at Mt. Etna volcano, J. Volcanol. Geotherm. Res., 251, 117–136, doi:10.1016/j.jvolgeores.2012.06.002. Bonforte, A., F. Guglielmino, M. Palano, and G. Puglisi (2004), A syn-eruptive ground deformation episode measured by GPS, during the 2001 eruption on the upper southern flank of Mt. Etna, Bull. Volcanol., 66, 336–341. Bonforte, A., S. Gambino, and M. Neri (2009), Intrusion of eccentric dikes: The case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano, Special Issue: Volcanoes, Tectonophysics, 471, 78–86, doi:10.1016/ j.tecto.2008.09.028. Bonforte, A., F. Guglielmino, M. Coltelli, A. Ferretti, and G. Puglisi (2011), Structural assessment ofMt. Etna volcano fromPermanent Scatterers analysis, Geochem. Geophys. Geosyst., 12, Q02002, doi:10.1029/2010GC003213. Borgia, A. (1994), Dynamic basis of volcanic spreading, J. Geophys. Res. Solid-Earth, 99(B9), 17,791–17,804, doi:10.1029/94JB00578. Borgia, A., L. Ferrari, and G. Pasquale (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231–235. Bousquet, J. C., and G. Lanzafame (2001), Nouvelle interprétation des fractures des éruptions latérales de l’Etna: conséquences pour son cadre tectonique, Bull. Soc. Geol. Fr., 172, 455–467. Branca, S., M. Coltelli, E. De Beni, and J. Wijbrans (2008), Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data, Int. J. Earth Sci., 97, 135–152. Brooks, B. A., J. H. Foster, M. Bevis, L. N. Frazer, C. J. Wolfe, and M. Behn (2006), Periodic slowearthquakes on the flank ofKīlauea volcano,Hawaiʻi, Earth Planet. Sci. Lett., 246, 207–216, doi:10.1016/j.epsl.2006.03.035. Burton, M. R., et al. (2005), Etna 2004-2005: An archetype for geodynamically-controlled effusive eruptions, Geophys. Res. Lett., 32, L09303, doi:10.1029/2005GL022527. Cappello, A., M. Neri, V. Acocella, G. Gallo, A. Vicari, and C. Del Negro (2012), Spatial vent opening probability map of Mt. Etna volcano (Sicily, Italy), Bull. Volcanol., 74, 2083–2094, doi:10.1007/s00445-012- 0647-4. Casu, F., M. Manzo, and R. Lanari (2006), A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data, Remote Sens. Environ., 102(3-4), 195–210, doi:10.1016/j. rse.2006.01.023. Cervelli, P., P. Segall, F. Amelung, H. Garbeil, C. Meertens, S. Owen, A. Miklius, and M. Lisowski (2002) The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii, J. Geophys. Res., 107(B7), 2150, doi:10.1029/2001JB000602. Corsaro, R. A., M. Neri, and M. Pompilio (2002), Paleo-environmental and volcano-tectonic evolution of the south-eastern flank of Mt. Etna during the last 225 ka inferred from volcanic succession of the «Timpe», Acireale, Sicily, J. Volcanol. Geotherm. Res., 113, 289–306, doi:10.1016/ S0377-0273(01)00262-1. Currenti, G., G. Solaro, R. Napoli, A. Pepe, A. Bonaccorso, C. Del Negro, and E. Sansosti (2012), Modeling of ALOS and COSMO-SkyMed satellite data at Mt Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest, Remote Sens. Environ., 125, 64–72. Delaney, P. T., R. P. Denlinger, M. Lisowski, A. Miklius, P. G. Okubo, A. T. Okamura, and M. K. Sako (1998), Volcanic spreading at Kilauea, 1976-1996, J. Geophys. Res., 103, 18,003–18,023. Dieterich, J. H. (1988), Growth and persistence of Hawaiian volcanic rift zones, J. Geophys. Res., 93, 4258–4270. Falsaperla, S., F. Cara, A. Rovelli, M. Neri, B. Behncke, and V. Acocella (2010), Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: the missing link?, J. Geophys. Res., 115, B11306, doi:10.1029/2010JB007529. Groppelli, G., and A. Tibaldi (1998), Control of rock rheology on deformation style and slip-rate along the active Pernicana Fault, Mt. Etna, Italy, Tectonophysics, 304, 521–537. Guglielmino, F., C. Bignami, A. Bonforte, P. Briole, F. Obrizzo, G. Puglisi, S. Stramondo, and U. Wegmüller (2011), Analysis of satellite and in situ ground deformation data integrated by the SISTEM approach: The April 3, 2010 earthquake along the Pernicana fault (Mt. Etna - Italy) case study, Earth Planet. Sci. Lett., 312(3–4), 327–336, doi:10.1016/j.epsl.2011.10.028. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Kieffer, G. (1985), Evolution structurale et dynamique d’un grand volcan polygénique: stades d’edification et activité actuelle de l’Etna (Sicile). Thèse Etat. Univ Clermont-Ferrand IIpp 1-497. Lanzafame, G., A. Leonardi,M. Neri, and D. Rust (1997), Late overthrust of the Appenine - Maghrebian Chain at the NE periphery of Mt. Etna, Sicily, C. R. Acad. Sci. Paris, 324, serie II a, 325–332. Lentini, F. (1982), The geology of the Mt. Etna basement, Mem. Soc. Geol. Ital., 23, 7–25. McGuire, W. J., A. D. Pullen, and S. J. Saunders (1990), Recent dyke-induced large-scale block movement atMount Etna and potential slope failure, Nature, 343, 357–359. Monaco, C., G. De Guidi, S. Catalano, C. Ferlito, G. Tortorici, and L. Tortorici (2008), Carta Morfotettonica del Monte Etna, Litografia Artistica Cartografica, Firenze. Neri,M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mount Etna (Italy) during the 2002-2003 eruption, Bull. Volcanol., 66, 417–430, doi:10.1007/s00445-003-0322-x. Neri, M., V. Acocella, B. Behncke, V. Maiolino, A. Ursino, and R. Velardita (2005), Contrasting triggering mechanisms of the 2001 and 2002-2003 eruptions of Mount Etna (Italy), J. Volcanol. Geotherm. Res., 144, 235–255, doi:10.1016/j.jvolgeores.2004.11.025. Neri, M., F. Guglielmino, and D. Rust (2007), Flank instability on Mount Etna: radon, radar interferometry and geodetic data from the southern boundary of the unstable sector, J. Geophys. Res., 112, B04410, doi:10.1029/2006JB004756. Neri, M., F. Casu, V. Acocella, G. Solaro, S. Pepe, P. Berardino, E. Sansosti, T. Caltabiano, P. Lundgren, and R. Lanari (2009), Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations, Geophys. Res. Lett., 36, L02309, doi:10.1029/2008GL036151. Neri, M., V. Acocella, B. Behncke, S. Giammanco, F. Mazzarini, and D. Rust (2011), Structural analysis of the eruptive fissures at Mount Etna (Italy), Ann. Geophys., 54(5), 464–479, doi:10.4401/ag-5332. Obrizzo, F., F. Pingue, C. Troise, and G. De Natale (2001), Coseismic displacements and creeping along the Pernicana fault (Etna, Italy) in the last 17 years: a detailed study of a tectonic structure on a volcano, J. Volcanol. Geotherm. Res., 109, 109–131. Owen, S. E., and R. Bürgmann (2006), An increment of volcano collapse: Kinematics of the 1975 Kalapana, Hawaii, earthquake, J. Volcanol. Geoth. Res., 150, 163–185. Palano, M., G. Puglisi, and S. Gresta (2007), Ground deformation at Mt. Etna: a joint interpretation of GPS and InSAR data from 1993 to 2000, Boll. Geofis. Teor. Appl., 48, 81–98. Park, J., J. K. Morgan, C. A. Zelt, and P. G. Okubo (2009), Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii, J. Geophys. Res., 114, B09301, doi:10.1029/2008JB005929. Rittmann, A. (1973), Structure and evolution of Mount Etna, Phil. Trans. R. Soc. London, 274A, 5–16. Rogers, G., and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip, Science, 300, 1942–43. Ruch, J., V. Acocella, F. Storti, M. Neri, S. Pepe, G. Solaro, and E. Sansosti (2010), Detachment depth revealed by rollover deformation: An integrated approach at Mount Etna, Geophys. Res. Lett., 37, L16304, doi:10.1029/ 2010GL044131. Ruch, J., S. Pepe, F. Casu, V. Acocella, M. Neri, G. Solaro, and E. Sansosti (2012), How do volcanic rift zones relate to flank instability? Evidence from a collapsing rift at Etna, Geophys. Res. Lett., 39, L20311, doi:10.1029/2012GL053683. Rust, D., and M. Neri (1996), The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily, in Volcano Instability on the Earth and Other Planets, edited by W. M. McGuire, A. P. Jones and J. Neuberg, Spec. Publ. Geol. Soc., London, 110, 193–208. Sansosti, E., F. Casu, M. Manzo, and R. Lanari (2010), Space-borne radar interferometry techniques for the generation of deformation time series: an RUCH ET AL.: SEISMO-TECTONIC BEHAVIOR AT ETNA 4408 advanced tool for Earth’s surface displacement analysis, Geophys. Res. Lett., 37, L20305, doi:10.1029/2010GL044379. Siniscalchi, A., S. Tripaldi, M. Neri, S. Giammanco, S. Piscitelli, M. Balasco, B. Behncke, C. Magrì, V. Naudet, and E. Rizzo (2010), Insights into fluid circulation across the Pernicana Fault (Mt. Etna, Italy) and implications for flank instability, J. Volcanol. Geotherm. Res., 193, 137–142, doi:10.1016/ j.jvolgeores.2010.03.013. Siniscalchi, A., S. Tripaldi, M. Neri, M. Balasco, G. Romano, J. Ruch, and D. Schiavone (2012), Flank instability structure of Mt Etna inferred by a magnetotelluric survey, J. Geophys. Res., 117, B03216, doi:10.1029/ 2011JB008657. Solaro, G., V. Acocella, S. Pepe, J. Ruch, M. Neri, and E. Sansosti (2010), Anatomy of an unstable volcano through InSAR observations from 1994 to 2008: multiple processes affecting flank instability at Mt. Etna, J. Geophys. Res., 115, B10405, doi:10.1029/2009JB000820. Swanson, D.A., W.A. Duffield, and R.S. Fiske (1976), Displacement of the south flank of Kilauea volcano: the result of forceful intrusion of magma into the rift zones, U.S. Geol. Surv. Prof. Pap., 963, 39 pp. Tibaldi, A., and G. Groppelli (2002), Volcano-tectonic activity along structures of the unstable NE flank of Mt.Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115, 277–302. Voight, B., and D. Elsworth (1997), Failure of volcano slopes, Geotechnique, 47, 1–31. Voight, B., H. Glicken, R. J. Janda, and P. M. Douglas (1981), Catastrophic rockslide avalanche of May 18, in The 1980 Eruptions of Mount St. Helens, vol. 1250, edited by P. W. Lipman and D. R. Mullineaux, pp. 347–377, Geol. Surv. Prof. Pap., Washington, D.C. Walter, T. R., V. Acocella, M. Neri, and F. Amelung (2005), Feedback processes betweenmagmatism and E-flankmovement atMt. Etna (Italy) during the 2002– 2003 eruption, J. Geophys. Res., 110, B10205, doi:10.1029/2005JB003688.en
dc.description.obiettivoSpecifico1T. Geodinamica e interno della Terraen
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.obiettivoSpecifico4T. Fisica dei terremoti e scenari cosismicien
dc.description.obiettivoSpecifico5T. Sorveglianza sismica e operatività post-terremotoen
dc.description.obiettivoSpecifico1V. Storia e struttura dei sistemi vulcanicien
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.obiettivoSpecifico3V. Dinamiche e scenari eruttivien
dc.description.obiettivoSpecifico4V. Vulcani e ambienteen
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorRuch, J.en
dc.contributor.authorPepe, S.en
dc.contributor.authorCasu, F.en
dc.contributor.authorSolaro, G.en
dc.contributor.authorPepe, A.en
dc.contributor.authorAcocella, V.en
dc.contributor.authorNeri, M.en
dc.contributor.authorSansosti, E.en
dc.contributor.departmentDipartimento di Scienze, Università Roma Tre, Largo S.L. Murialdo 1, Rome IT-00146, Italyen
dc.contributor.departmentNational Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.departmentNational Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.departmentNational Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.departmentNational Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
dc.contributor.departmentDipartimento di Scienze, Università Roma Tre, Largo S.L. Murialdo 1, Rome IT-00146, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentNational Research Council, Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Naples, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento Scienze Geologiche, Università Roma Tre, Roma, Italy-
crisitem.author.deptCNR-IREA-
crisitem.author.deptCNR-IREA-
crisitem.author.deptIREA-CNR, Naples, Italy.-
crisitem.author.deptUniversita` Federico II, Dipartimento di Ingegneria Elettronica e delle Telecomunicazioni-
crisitem.author.deptUniversità Roma Tre, Dipartimento di Scienze Geologiche, Rome, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptCNR-IREA-
crisitem.author.orcid0000-0002-7843-3565-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2013 Ruch et al JGR 2013.pdfMain Article5.61 MBAdobe PDF
Show simple item record

Page view(s) 5

437
checked on Apr 17, 2024

Download(s) 50

84
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric