Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8954
DC FieldValueLanguage
dc.contributor.authorallMelia, P.; Dipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.contributor.authorallSchiavina, M.; Dipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.contributor.authorallGatto, M.; Dipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.contributor.authorallBonaventura, L.; MOX, Dipartimento di Matematica ‘F. Brioschi’, Politecnico di Milano, Italyen
dc.contributor.authorallMasina, S.; Centro Euro-Mediterraneo sui Cambiamenti Climatici,Bologna,Italy and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italyen
dc.contributor.authorallCasagrandi, R.; Dipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.date.accessioned2014-02-27T13:48:05Zen
dc.date.available2014-02-27T13:48:05Zen
dc.date.issued2013-07-30en
dc.identifier.urihttp://hdl.handle.net/2122/8954en
dc.description.abstractLagrangian simulations based on coupled physical-biological models can help deter- mine the mechanisms that affect fish recruitment, but only if the key biological and environmental drivers are accurately described. However, it is difficult to obtain experimental measurements for some vital traits, such as mortality and/or movement patterns. The different hypotheses about these traits can be contrasted by comparing simulation outputs with experimental data that can be collected in the field, such as body size distribution at selected transects. We used this approach to study the oceanic migration of European eel larvae. Despite considerable research effort (involv- ing both field surveys and simulation studies), it is still uncertain whether this migration is a purely passive process or the result of the interaction between transport by currents and an active larval movement. Based on present knowledge of eel larvae and predictions of metabolic ecology, we developed a parameterized model that provided a simple, yet biologically reasonable description of the species’ key life history traits (body growth, mortality and movement). We contrasted differ- ent model settings and identified the most plausible migration scenario by comparing simulation results against experimental data. The best-performing scenario was not purely passive but in - cluded an active larval propulsion proportional to body size. The corresponding migration dura- tion was about 3 yr. Our modelling study succeeded in assimilating experimental data within a conceptual framework that is consistent with that sketched out, almost a century ago, by Danish biologist Johannes Schmidt.en
dc.description.sponsorshipFinancial support was provided by Politecnico di Milano and the Italian Ministry of Research (PRIN project no. 2006054928 ‘An Integrated Approach to the Conservation and Management of the European Eel in the Mediterranean Region’)en
dc.language.isoEnglishen
dc.publisher.nameJohn Wiley & Sonsen
dc.relation.ispartofmarine ecology progress seriesen
dc.relation.ispartofseries/487 (2013)en
dc.subjectAnguilla anguillaen
dc.subjectLagrangian simulationsen
dc.subjectLarval dispersalen
dc.subjectPhysical-biological couplingen
dc.subjectMovement ecologyen
dc.subjectLife history traitsen
dc.subjectData assimilationen
dc.titleIntegrating field data into individual-based models of the migrationof European eel larvaeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber135-149en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.identifier.doi10.3354/meps10368en
dc.relation.referencesAls TD, Hansen MM, MaesGE, CastonguayMand others (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea.Mol Ecol20: 1333−1346 AndrelloM, BevacquaD, MaesGE, De LeoGA(2011) An integrated genetic-demographic model to unravel the origin of genetic structure in European eel (Anguilla anguillaL.).Evol Appl4: 517−533 Arai T, OtakeT, TsukamotoK(2000) Timing of metamor- phosis and larval segregation of the Atlantic eels Anguilla rostrataand A. anguilla, as revealed by otolith microstructure and microchemistry. Mar Biol 137: 39−45 Bast HD, StrehlowB(1990) Length composition and abun- dance of eel larvae, Anguilla anguilla(Anguilliformes: Anguillidae), in the Iberian Basin (northeastern Atlantic) during July−September 1984. Helgol Meersunters 44: 353−361 BevacquaD, MeliàP, Crivelli AJ, De LeoGA, GattoM (2006) Timing and rate of sexual maturation of European eel in brackish and freshwater environments. J Fish Biol 69(Suppl C): 200−208 BevacquaD, MeliàP, Crivelli AJ, De LeoGA, GattoM (2009) Assessing management plans for the recovery of the European eel: a need for multi-objective analyses. Am Fish Soc Symp 69: 637−647 BevacquaD, MeliàP, De LeoGA, GattoM(2011) Intra- specific scaling of natural mortality in fish: the paradig- matic case of the European eel. Oecologia165: 333−339 BlankeB, BonhommeauS, GrimaN, DrilletY(2012) Sensi- tivity of advective transfer times across the North Atlantic Ocean to the temporal and spatial resolution of model velocity data: implication for European eel larval transport.Dyn Atmos Oceans55−56: 22−44 BoëtiusJ, HardingEF(1985a) A re-examination of Johannes Schmidt’s Atlantic eel investigations.Dana4: 129−162 Boëtius J, HardingEF(1985b) List of Atlantic and Medi - terranean Anguillaleptocephali: Danish material up to 1966.Dana4: 163−249 BonhommeauS, Chassot E, Rivot E(2008) Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea. Fish Oceanogr17: 32−44 BonhommeauS, BlankeB, TréguierAM, GrimaNand oth- ers (2009a) How fast can the European eel (Anguilla anguilla) larvae cross the Atlantic Ocean?Fish Oceanogr 18: 371−385 BonhommeauS, Le PapeO, GascuelD, BlankeBand others (2009b) Estimates of the mortality and the duration of thetrans-Atlantic migration of European eel Anguilla anguillaleptocephali using a particle tracking model. JFish Biol74: 1891−1914 BonhommeauS, CastonguayM, RivotE, SabatiéR, Le Pape O(2010) The duration of migration of Atlantic Anguilla larvae.Fish Fish11: 289−306 BrownJH, GilloolyJF, AllenAP, SavageVM, West GB (2004) Toward a metabolic theory of ecology.Ecology85: 1771−1789 CastonguayM(1987) Growth of American and European eel leptocephali as revealed by otolith microstructure. Can J Zool65: 875−878 CastonguayM, McCleaveJD(1987) Vertical distributions, diel and ontogenetic vertical migrations and net avoid- ance of leptocephali of Anguillaand other common spe- cies in the Sargasso Sea.J Plankton Res9: 195−214 CowenRK, SponaugleS(2009) Larval dispersal and marine population connectivity.Annu Rev Mar Sci1: 443−466 De LeoGA, GattoM(1995) A size and age-structured model of the European eel (Anguilla anguillaL.). Can J Fish Aquat Sci52: 1351−1367 DekkerW(2000) A Procrustean assessment of the European eel stock.ICES J Mar Sci57: 938−947 Desaunay Y, Guérault D(1997) Seasonal and long-term changes in biometrics of eel larvae: a possible relation- ship between recruitment variation and North Atlantic ecosystem productivity. J Fish Biol 51(Suppl A): 317−339 Di FrancoA, Coppini G, PujolarJM, De LeoGAand others (2012) Assessing dispersal patterns of fish propagules from an effective Mediterranean marine protected area. PLoS ONE7: e52108 FiksenØ, JørgensenC, KristiansenT, VikebøF, HuseG (2007) Linking behavioural ecology and oceanography: Larval behaviour determines growth, mortality and dis- persal.Mar Ecol Prog Ser347: 195−205 GallegoA, NorthEW, PetitgasP(2007) Introduction: status and future of modelling physical-biological interactions during the early life of fishes. Mar Ecol Prog Ser 347: 121−126 HalpernBS, Walbridge S, Selkoe KA, Kappel CVand others (2008) A global map of human impact on marine ecosys- tems.Science319: 948−952 HannahCG(2007) Future directions in modelling physical− biological interactions.Mar Ecol Prog Ser347: 301−306 Harden Jones FR(1968) Fish migration. Edward Arnold, London HolyoakM, Casagrandi R, NathanR, RevillaE, Spiegel O (2008) Trends and missing parts in the study of move- ment ecology. Proc Natl Acad Sci USA105: 19060−19065 HoyleSD, JellymanDJ(2002) Longfin eels need reserves: modelling the effects of commercial harvest on stocks of New Zealand eels.Mar Freshw Res53: 887−895 KellyJT, KlimleyAP(2012) Relating the swimming move- ments of green sturgeon to the movement of water cur- rents.Environ Biol Fishes93: 151−167 KettleAJ, Haines K(2006) How does the European eel (Anguilla anguilla) retain its population structure during its larval migration across the North Atlantic Ocean?Can J Fish Aquat Sci63: 90−106 KettleAJ, VøllestadLA, WibigJ(2011) Where once the eel and the elephant were together: decline of the European eel because of changing hydrology in southwest Europe and northwest Africa?Fish Fish12: 380−411 KirkpatrickM(1984) Demographic models based on size, not age, for organisms with indeterminate growth. Ecol- ogy65: 1874−1884 Kuroki M, AoyamaJ, Miller MJ, WouthuyzenS, Arai T, TsukamotoK(2006) Contrasting patterns of growth and migration of tropical anguillid leptocephali in the west- ern Pacific and Indonesian Seas. Mar Ecol Prog Ser309: 233−246 Lecomte-Finiger R(1992) Growth history and age at re - cruitment of European glass eels Anguilla anguillaas revealed by otolith microstructure.Mar Biol114: 205−210 MasinaS, Di PietroP, NavarraA(2004) Interannual-to- decadal variability of the North Atlantic from an ocean data assimilation system.Clim Dyn23: 531−546 McCleaveJD(2008) Contrasts between spawning times of Anguillaspecies estimated from larval sampling at sea and from otolith analysis of recruiting glass eels.Mar Biol 155: 249−262 McCleave JD, Kleckner RC(1987) Distribution of lepto- cephali of the catadromous Anguillaspecies in the west- ern Sargasso Sea in relation to water circulation and migration.Bull Mar Sci41: 789−806 McCleaveJD, Kleckner RC, CastonguayM(1987) Repro- ductive simpatry of American and European eels and implications for migration and taxonomy. Am Fish Soc Symp1: 286−297 McCleaveJD, BrickleyPJ, O’BrienKM, KistnerDA, Wong MW, Gallagher M, WatsonSM(1998) Do leptocephali of the European eel swim to reach continental waters? Status of the question. J Mar Biol Assoc UK78: 285−306 MeliàP, BevacquaD, CrivelliAJ, De LeoGA, PanfiliJ, Gatto M(2006a) Age and growth of Anguilla anguillain the Camargue lagoons.J Fish Biol68: 876−890 MeliàP, BevacquaD, CrivelliAJ, PanfiliJ, De LeoGA, Gatto M(2006b) Sex differentiation of the European eel in brackish and freshwater environments: a comparative analysis.J Fish Biol69: 1228−1235 Miller TJ(2007) Contribution of individual-based coupled physical−biological models to understanding recruit- ment in marine fish populations. Mar Ecol Prog Ser347: 127−138 Miller MJ, McCleave FD(1994) Species assemblages of leptocephali in the Subtropical Convergence Zone of the Sargasso Sea.J Mar Res52: 743−772 MontgomeryJC, Baker CF, CartonAG(1997) The lateral line can mediate rheotaxis in fish.Nature389: 960−963 MunkP, HansenMM, Maes GE, NielsenTGand others (2010) Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc Biol Sci 277: 3593−3599 NathanR, WayneMG, RevillaE, HolyoakM, KadmonR, SaltzD, SmousePE(2008) A movement ecology para- digm for unifying organismal movement research. Proc Natl Acad Sci USA105: 19052−19059 OliveiraK, HableE(2010) Artificial maturation, fertilization, and early development of the American eel (Anguilla rostrata).Can J Zool88: 1121−1128 Olszewski J, Haehnel M, Taguchi M, Liao JC(2012) Zebrafish larvae exhibit rheotaxis and can escape a con- tinuous suction source using their lateral line.PLoS ONE 7: e36661 PetersRH(1983) The ecological implications of body size. Cambridge University Press, Cambridge Power JH, McCleaveJD(1983) Simulation of the North Atlantic Ocean drift of Anguillaleptocephali. Fish Bull 81: 483−500 RightonD, AarestrupK, JellymanD, Sébert P, van den ThillartG, TsukamotoK(2012) The Anguillaspp. migra- tion problem: 40 million years of evolution and two millennia of speculation.J Fish Biol81: 365−386 Schmidt J(1923) The breeding places of the eels. Philos Trans R Soc Lond B211: 179−208 SchothM, TeschFW(1982) Spatial distribution of 0-group eel larvae (Anguillasp.) in the Sargasso Sea. Helgol Meeresunters35: 309−320 ShinodaA, AoyamaJ, MillerMJ, OtakeTand others(2011) Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Rev Fish Biol Fish21: 591−611 TanakaH, KagawaH, OhtaH(2001) Production of lepto- cephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture201: 51−60 TeschFW(1980) Occurrence of eel Anguilla anguillalarvae west of the European continental shelf, 1971−1977. Environ Biol Fishes5: 185−190 TeschFW(2003) The eel. Blackwell, Oxford TsukamotoK, YamadaY, OkamuraA, KanekoTand others (2009) Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar Biol 156: 835−846 van GinnekenVJT, Maes GE(2005) The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review. Rev Fish Biol Fish15: 367−398 van GinnekenV, AntonissenE, MüllerEK, BoomsR, Eding E, VerrethJ, van den Thillart G(2005) Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs.J Exp Biol208: 1329−1335 WangCH, TzengWN(2000) The timing of metamorphosis and growth rates of American and European eel lepto- cephali: a mechanism of larval segregative migration. Fish Res46: 191−205 Wuenschel MJ, Able KW (2008) Swimming ability of eels (Anguilla rostrata, Conger oceanicus) at estuarine in - gress: Contrasting patterns of cross-shelf transport? Mar Biol 154: 775–786 YamadaY, OkamuraA, MikawaN, UtohTand others(2009) Ontogenetic changes in phototactic behavior during meta - morphosis of artificially reared Japanese eel Anguilla japonicalarvae.Mar Ecol Prog Ser379: 241−251 ZenimotoK, Sasai Y, Sasaki H, KimuraS(2011) Estimation of larval duration in Anguilla spp., based on cohort analysis, otolith microstructure, and Lagrangian simula- tions.Mar Ecol Prog Ser438: 219−228en
dc.description.obiettivoSpecifico3A. Ambiente Marinoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1071-8630en
dc.contributor.authorMelia, P.en
dc.contributor.authorSchiavina, M.en
dc.contributor.authorGatto, M.en
dc.contributor.authorBonaventura, L.en
dc.contributor.authorMasina, S.en
dc.contributor.authorCasagrandi, R.en
dc.contributor.departmentDipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.contributor.departmentDipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.contributor.departmentDipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
dc.contributor.departmentMOX, Dipartimento di Matematica ‘F. Brioschi’, Politecnico di Milano, Italyen
dc.contributor.departmentCentro Euro-Mediterraneo sui Cambiamenti Climatici,Bologna,Italy and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italyen
dc.contributor.departmentDipartimento di Elettronica e Informazione, Politecnico di Milano,Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.classification.parent03. Hydrosphere-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
meliaetal_2013.pdfmain article888.04 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

28
checked on Feb 10, 2021

Page view(s) 10

328
checked on Apr 17, 2024

Download(s) 50

90
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric