Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8942
DC FieldValueLanguage
dc.contributor.authorallLaudicina, V. A.; Dipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italyen
dc.contributor.authorallScalenghe, R.; Dipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italyen
dc.contributor.authorallPisciotta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallParello, F.; Dipartimento di Scienza della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.authorallDazzi, C.; Dipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italyen
dc.date.accessioned2014-02-24T12:04:01Zen
dc.date.available2014-02-24T12:04:01Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8942en
dc.description.abstractSoil carbonates are key features in soils of arid and semiarid environment, playing an important role from pedogenetic, landscape history, paleoclimatic and environmental points of view. The objectives of this work were (i) to study pathways of pedogenic carbonate (PC) formation, (ii) to distinguish between lithogenic and pedogenic inorganic C by using the natural C isotope abundance, and (iii) to estimate the soil C pools in a gypsiferous semiarid Mediterranean environment (Sicily, Italy). Five soil pedons developed on calcareous and non-calcareous parent materials from Holocene (10,000 years BP) to Upper Tortonian (7.2–5.3 Ma BP) in age were surveyed. During field soil description, the highest stage of carbonate morphology was found in soils developed on non-calcareous Holocene colluvial deposits (youngest deposits in age) which also showed the highest amount of PC. The great amount of PC in soils developed on youngest deposits was ascribed to a soil–landscape relationships. Being located in a doline overhung by gypsum outcrops, precipitation of Ca2+ from gypsum dissolved by rainfall and biogenic CO2 is reliable. The significant positive relationship between soil organic C and pedogenic carbonates δ13C values confirms that PC was formed from biogenic CO2. Organic C pool in the first cubic meter of soil ranged from 17 to 42 kg, whilst pedogenic inorganic C pool from 2.8 to 30.7 kg. The estimated rate of inorganic C accumulation in soils developed on youngest deposits was 2.5 g m−3 y−1, whereas the rate was negligible on older parent material. The hypothesized pathways of PC formation were ex-novo precipitation of gypsum–Ca2+ and biogenic CO2 and dissolution of lithogenic CaCO3 and re-precipitation of Ca2+ with biogenic CO2. From an environmental prospective, investigated soils may act as a sink of C when Ca2+ from gypsum is available for the formation of pedogenic carbonates.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofGeodermaen
dc.relation.ispartofseries/192(2013)en
dc.subjectGypsiferous soilsen
dc.subjectSoil carbonatesen
dc.subjectStable C isotopesen
dc.subjectSoil C poolsen
dc.subjectSoil–landscape relationshipen
dc.titlePedogenic carbonates and carbon pools in gypsiferous soils of a semiarid Mediterranean environment in south Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber31-38en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1016/j.geoderma.2012.07.015en
dc.relation.referencesAgnesi, V., Macaluso, T., Meneghel, M., Sauro, U., 1989. Geomorfologia dell'area carsica di S. Ninfa. In: Palermo, S.Z. (Ed.), I gessi di Santa Ninfa: studio multidisciplinare di un'area carsica: Memorie Istituto Italiano Speleologia, 3, pp. 23–48. [in Italian]. Arteida, O., Herrero, J., Drohan, P.J., 2006. Refinement of the differential water loss method for gypsum determination in soils. Soil Science Society of America Journal 70, 1932–1935. Birkeland, P.W., 1999. Soils and Geomorphology, 3rd edition. Oxford University Press, Inc., p. 430. Blake, G.R., Hartge, K.H., 1986. Bulk Density, In: Klute, A. (Ed.), Methods of Soil Analysis, Part I. Physical and Mineralogical Methods: Agronomy Monograph no. 9, 2nd ed. , pp. 363–375. Boynton, W.V., Ming, D.W., Kounaves, S.P., Young, S.M.M., Arvidson, R.E., Hecht, M.H., Hoffman, J., Niles, P.B., Hamara, D.K., Quinn, R.C., Smith, P.H., Sutter, B., Catling, D.C., Morris, R.V., 2009. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 61–64. Breecker, D.O., Sharp, Z.D., McFadden, L.D., 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin 121, 630–640. Cardellini, C., Frondini, F., Gambardella, B., Morgantini, N., 2008. Flussi di CO2 dal suolo nell'area di Muravera. Geobasi il foglio IGMI N°549- Muravera. 978-88-7781-926- 0. 185–200. Carreira, J.A., Vinegla, B., Lajtha, K., 2006. Secondary CaCO3 and precipitation of P-Ca compounds control the retention of soil P in arid ecosystems. Journal of Arid Environments 64, 460–473. Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229–240. Cerling, T.E., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: Swart, P., et al. (Ed.), Climate Change in Continental Isotopic Records, American Geophysical Union: Geophysical Monograph, 78, pp. 217–231. Cerling, T.E., Wang, Y., 1996. Stable carbon and oxygen isotopes in soil CO2 and soil carbonates: Theory, practice, and applications to some prairie soils of Upper Midwestern North America. In: Boutton, T.W., Yamasaki, S.I. (Eds.), Mass Spectrometry of Soils. Marcel Dekker, New York, pp. 113–131. Chadwick, O.A., Kelly, E.F., Merritts, D.M., Amundson, R.G., 1994. Carbon dioxide consumption during soil development. Biogeochemistry 24, 115–127.Craig, H., 1957. Isotopic standards for carbon and oxygen and correction formass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–149. Dazzi, C., Monteleone, S., 2002. Soils and soil landform relationships along an elevational transect in a gypsiferous hilly area in central Sicily, Italy. In: Zdruli, P., et al. (Ed.), CIHEAM-IAMB. 7th International meeting on soils with Mediterranean type of climate (selected papers), Bari, Italy, pp. 73–86. Dazzi, C., Laudicina, V.A., Lo Papa, G.,Monteleone, S., Scalenghe, R., 2005. Soilswith Gypsic Horizons in Southern Sicily, Italy. In: Faz, A., Roque, R., Mermut, A. (Eds.), Advanced in Geology, 36. Catena Verlag, pp. 13–22. De Bodt, C., Van Oostende, N., Harlay, J., Sabbe, K., Chou, L., 2009. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences Discussions 6, 11127–11157. Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochimica et Cosmochimica Acta 18, 1147–1164. Egli, M., Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages and climates. Catena 46, 35–62. Eswaran, H., Reich, P.F., Kimble, J.M., Beinroth, F.H., Padmanabhan, E., Moncharoen, P., 2000. Global carbon stocks. In: Lal, R., et al. (Ed.), Global Climate Change and Pedogenic Carbonate. Lewis Publishers, Boca Raton, Florida, pp. 15–25. Ferrarese, F., Macaluso, T., Madonia, G., Palmeri, A., Sauro, U., 2002. Solution and recrystallisation processes and associated landforms in gypsum outcrops of Sicily. Geomorphology 49, 25–43. Fierotti, G., Dazzi, C., Raimondi, S., 1988. A report on the soil map of Sicily. Regione Siciliana, Assessorato Territorio ed Ambiente, Palermo, Italy. Gee, G.W., Bauder, J.W., 1986. Particle-size analysis, In: Klute, A. (Ed.), Methods of soil analysis, 2nd ed. : Agron. Monogr. 9. ASA and SSSA,Madison,WI, pp. 383–411. Part 1. Ghosh, P., Garzione, C.N., Eiler, J.M., 2006. Rapid uplift of the altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311, 511–515. Gile, L.H., 1995. Pedogenic carbonate in soils of the Isaacks’ ranch surface, Southern New Mexico. Soil Science Society of America Journal 59, 501–508. Gile, L.H., Peterson, F.F., Grossman, R.B., 1966. Morphologic and genetic sequences of carbonate accumulation in desert soils. Soil Science 101, 347–360. Gile, L.H., Hawley, J.W., Grossman, R.B., 1981. Soils and geomorphology in the basin and range of southern New Mexico. Guidebook to the Desert Project. New Mexico Bureau of Mines and Mineral Resources Memoir 39. Hoke, G.D., Garzione, C.N., Araneo, D.C., Latorre, C., Strecker, M.R., Williams, K.J., 2009. The stable isotope altimeter: do quaternary pedogenic carbonates predict modern elevations? Geology 37, 1015–1018. Hollingsworth, M.D., 2009. Calcite biocomposites up close. Science 326, 1194–1195. IUSS Working Group WRB, 2007. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome. Kelly, E.F., Amundson, R.G., Marino, B.D., De Niro, M.J., 1991. Stable carbon isotopic composition of carbonate in Holocene grassland soil. Soil Science Society of America Journal 55, 1651–1658. Khademi, K., Mermut, A.R., 1999. Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols. European Journal of Soil Science 50, 207–216. Khokhlova, O.S., Kovalevskaya, I.S., Oleynik, S.A., 2001. Records of climatic changes in the carbonate profiles of Russian Chernozems. Catena 43, 203–215. Khresat, S.A., 2001. Calcic horizon distribution and soil classification in selected soils of north-western Jordan. Journal of Arid Environments 47, 145–152. Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425–448. Kuzyakov, Y., Shevtzova, E., Pustovoytov, K., 2006. Carbonate re-crystallization in soil revealed by 14C labeling: experiment,model and significance for paleo-environmental reconstructions. Geoderma 131, 45–58. Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., 2000. Global climate change and pedogenic carbonate, p. 320. Landi, A., Mermut, A.R., Anderson, D.W., 2003. Rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 117, 141–154. Landi, A., Mermut, A.R., Anderson, D.W., 2004. Carbon distribution in a hummocky landscape from Saskatchewan, Canada. Soil Science Society of America Journal 68, 175–184.Machette, M.N., 1985. Calcic soils of the Southwestern United States. In: Weide, D.L. (Ed.), Soils and Quaternary Geology of the Southwestern United States: Geological Society of America. Special paper, 203, pp. 1–21. Magaritz, M., Amiel, A.J., 1980. Calcium carbonates nodules in calcareous soils from the Jordan Valley, Israel: its origin revealed by the stable carbon isotope method. Soil Science Society of America Journal 44, 1059–1062. Mahecha, M.D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S.I., Vargas, R., Ammann, C., Arain, M.A., Cescatti, A., Janssens, I.A., Migliavacca, M., Montagnani, L., Richardson, A., 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840. Manning, D.A.C., 2008. Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Mineralogical Magazine 72, 639–649. Mayer, L., McFadden, L.D., Harden, J.W., 1988. Distribution of calcium carbonate in desert soil: a model. Geology 16, 303–306. Midwood, A.J., Boutton, T.W., 1998. Soil carbonate decomposition by acid has little effect on δ13C of organic matter. Soil Biology and Biochemistry 30, 1301–1307. Mikhailova, E.A., Post, C.J., 2006. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem. Journal of Environmental Quality 35, 1384–1388. Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. : Part 3, Chemical Methods. SSSA Book Series No 5. SSSA and ASA, Madison, WI, pp. 961–1010. Nordt, L.C., Hallmark, C.T., Wilding, L.P., Boutton, T.W., 1998. Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma 82, 115–136. Owliaie, H.R., Abtahi, A., Heck, R.J., 2006. Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma 134, 62–81. Pal, D.K., Dasog, G.S., Vadivelu, R.L., Ahuja, R.L., Bhattacharyya, T., 2000. Secondary calcium carbonate in soils of arid and semiarid regions of India. In: Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A. (Eds.), Global Climate Change and Pedogenic Carbonate. Lewis Publishers, Boca Raton, Florida, pp. 149–185. Pan, G., Guo, T., 2000. Pedogenic carbonate of aridic soils in China and its significance in carbon sequestration in terrestrial systems. In: Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A. (Eds.), Global Climate Change and Pedogenic Carbonate. Lewis Publishers, Boca Raton, Florida. Peterson, G.A., Westfall, D.G., Wood, C.W., Ross, S., 1988. Crop and soil management in dryland agroecosystems. Colorado State University Technical Bullettin LTB88-6. Colorado State University, Fort Collins. Prescott, J.A., 1950. A climatic index for the leaching factor in soil formation. European Journal of Soil Science 1, 9–19. Pustovoytov, K., 1998. Pedogenic carbonate cutans as a record of the Holocene history of relic tundra–steppes of the Upper Kolyma Valley (North-Eastern Asia). Catena 34, 185–195. Quade, J., Cerling, T.E., Bowman, J.R., 1989. Systematic variations in the stable carbon and oxygen isotopic composition of pedogenic carbonate along elevation transacts in the southern Great Basin. USA Geological Society of America Bulletin 101, 464–475. Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81–99. Salomons, W., Mook, W.G., 1976. Isotope geochemistry of carbonate dissolution and reprecipitation in soils. Soil Science 122, 15–24. Schlesinger, W.H., 1985. The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta 49, 57–66. Skjemstad, O.J., Le Feuvre, R.P., Prebble, R.E., 1990. Turnover of soil organic matter under pasture as determined by 13C natural abundance. Australian Journal of Soil Resources 28, 267–276. Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. . Soil Survey Staff, 2010. Keys to Soil Taxonomy, 11th ed. USDA-Natural Resources Conservation Service, Washington, DC. Volkoff, B., Cerri, C.C., 1987. Carbon isotope fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant and Soil 102, 27–31. Williams, D.E., 1948. A rapid manometer method for the determination of carbonate in soils. Soil Science Society of America Proceedings 13, 127–129.en
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0016-7061en
dc.relation.eissn1872-6259en
dc.contributor.authorLaudicina, V. A.en
dc.contributor.authorScalenghe, R.en
dc.contributor.authorPisciotta, A.en
dc.contributor.authorParello, F.en
dc.contributor.authorDazzi, C.en
dc.contributor.departmentDipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italyen
dc.contributor.departmentDipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italy-
crisitem.author.deptDipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.deptDipartimento dei Sistemi Agro-Ambientali, Università degli Studi di Palermo, Viale delle Scienze 13, 90128 Palermo, Italy-
crisitem.author.orcid0000-0002-2289-3028-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Laudicia et al.pdfmain article982.24 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 5

514
checked on Apr 20, 2024

Download(s)

23
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric