Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8872
DC FieldValueLanguage
dc.contributor.authorallAgusto, M.; IDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentinaen
dc.contributor.authorallTassi, F.; Institute of Geosciences and Earth Resources of the National Research Council (CNR-IGG), Via La Pira, 4, 50121, Florence, Italy; Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Florence, Italyen
dc.contributor.authorallCaselli, A. T.; IDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentinaen
dc.contributor.authorallVaselli, O.; Institute of Geosciences and Earth Resources of the National Research Council (CNR-IGG), Via La Pira, 4, 50121, Florence, Italy ;Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Florence, Italyen
dc.contributor.authorallRouwet, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCapaccioni, B.; Department of Earth and Geological-Environmental Sciences, Piazza Porta San Donato, 1, 40126, Bologna, Italyen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDarrah, T.; Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USAen
dc.date.accessioned2014-01-16T11:59:09Zen
dc.date.available2014-01-16T11:59:09Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8872en
dc.description.abstractCopahue volcano is part of the Caviahue–Copahue Volcanic Complex (CCVC),which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina–Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe–Ofqui strike slip and the northern Copahue–Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from −8.8‰ to −6.8‰ vs. V-PDB), δ15N values (+5.3‰ to +5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°–220 °C. On the contrary, rock–fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006–2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic systemhad a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries/257 (2013)en
dc.subjectFluid geochemistryen
dc.subjectCopahue volcanoen
dc.subjectFumarolic fluiden
dc.subjectHydrothermal reservoiren
dc.subjectVolcanic unresten
dc.titleGas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber44–56en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1016/j.jvolgeores.2013.03.003en
dc.relation.referencesAgusto, M., 2011. Estudio geoquímico de los fluidos volcánicos e hidrotermales del Complejo Volcánico Copahue Caviahue y su aplicación para tareas de seguimiento. Ph.D. Thesis, Universidad de Buenos Aires, pp. 270. Anderson, R.B., 1984. The Fischer–Tropsch Synthesis. Academic Press, New York. Bermúdez, A., Delpino, D., 1995. Mapa de lospeligros potenciales en el area del Volcàn Copahue, Sector Argentino: Neuquen, Argentina. Province of Neuquen Geological Survey, scale 1:50 000. Bermúdez, A., Delpino, D., López Escobar, L., 2002. Caracterización geoquímica de lavas y piroclastos holocenos del volcán Copahue, incluyendo los originados en la erupción del año 2000. Comparación con otros volcanes de la Zona Volcánica Sur de los Andes. Final Proc. XV Congreso Geológico Argentino, Calafate, Argentina, pp. 377–382. Capaccioni, B., Mangani, F., 2001. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth and Planetary Science Letters 188, 543–555. Capaccioni, B., Martini, M., Mangani, F., Giannini, G., Nappi, G., Prati, F., 1993. Light hydrocarbons in gas-emissions from volcanic areas and geothermal fields. Geochemical Journal 27, 7–17. Capaccioni, B., Martini, M., Mangani, F., 1995. Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bulletin of Volcanology 56, 593–600. Capaccioni, B., Tassi, F., Vaselli, O., 2001. Organic and inorganic geochemistry of low temperature gas discharges at the Baia di Levante beach, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research 108, 173–185. Capaccioni, B., Taran, Y., Tassi, F., Vaselli, O., Mangani, F., Macias, J.L., 2004. Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). Chemical Geology 20, 81–96. Capaccioni, B., Aguilera, F., Tassi, F., Vaselli, O., 2011. Geochemistry of gas emissions from Tacora volcano (northern Chile): evidences of magmatic fluid input into a hydrothermal reservoir. Journal of Volcanology and Geothermal Research 208, 77–85. Caselli, A.T., Agusto, M.R., Fazio, A., 2005. Cambios térmicos y geoquímicos del lago cratérico del volcán Copahue (Neuquén): posibles variaciones cíclicas del sistema volcánico. Final Proc. XVI Congreso Geológico Argentino, La Plata, Argentina, pp. 751–756. Cembrano, J., Shermer, E., Lavenu, A., Sanueza, A., 2000. Contrasting nature of the formation along an intraarc shear zone, the Liquiñe–Ofqui fault zone, Southern Chilean Andes. Tectonophysics 319, 129–149. Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochimica et Cosmochimica Acta 62, 2673–2687. Chiodini, G., Cioni, R., Marini, L., 1993. Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Applied Geochemistry 8 (4), 357–371. Chiodini, G., Brombach, T., Caliro, S., Cardellini, C., Marini, L., Dietrich, V., 2002. Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece). Geophysical Research Letters 29 (16). http://dx.doi.org/10.1029/2001GL01435. Chiodini, G., Caliro, S., Lowenstern, J.B., Evans, W.C., Bergfeld, D., Tassi, F., Tedesco, D., 2012. Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochimica et Cosmochimica Acta 89, 265–278. Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 1702–1703. D'Amore, F., Panichi, C., 1980. Evaluation of deep temperature of hydrothermal systems by a new gas-geothermometer. Geochimica et Cosmochimica Acta 44, 549–556. Darling, W.G., 1998. Hydrothermal hydrocarbons gases: 1 Genesis and geothermometry. Applied Geochemistry 13, 815–824. Dellapé, D., Pando, G., 1975. Relevamiento geológico de la cuenca geotérmica de Copahue. Yacimientos Petrolíferos Fiscales. Unpublished Report No. 524, Buenos Aires, Argentina, pp. 11 (in Spanish). Delpino, D., Bermúdez, A., 1993. La actividad del volcán Copahue durante 1992. Erupción con emisiones de azufre piroclástico. Provincia de Neuquen, Argentina. Final Proc. XII Congreso Geológico Argentino, Mendoza, Argentina, pp. 292–301. Delpino, D., Bermúdez, A., 2002. La erupción del volcán Copahue del año 2000. Impacto social y al medio natural. Provincia del Neuquén. Argentina. Final Proc. XXV Congreso Geológico Argentino, Calatafe, Argentina, pp. 365–370 DeMets, C., Gordon, R., Argus, D., Stein, S., 1994. Effect of recent revision to the geomagnetic reversal time scale on estimate of current plate motion. Geophysical Research Letters 21 (20), 2191–2194. http://dx.doi.org/10.1029/94(GL)02118. Elkins, L.J., Fischer, T.P., Hilton, D.R., Sharp, Z.P., McKnight, S., Walker, J., 2006. Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochimica et Cosmochimica Acta 70, 5215–5235. Epstein, S., Mayeda, T., 1953. Variation of O-18 content of waters from natural sources. Geochimica et Cosmochimica Acta 4, 213–224. Evans, W.C., White, L.D., Rapp, J.B., 1998. Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca ridge. Journal of Geophysical Research 15, 305–313. Fehn, U., Snyder, G.T., Varekamp, J.C., 2002. Detection of recycled marine sediment components in crater lake fluids using 129I. Journal of Volcanology and Geothermal Research 115, 451–460. Fiebig, J., Woodland, A.B., Spangenberg, J., Oschmann, W., 2007. Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochimica et Cosmochimica Acta 71, 3028–3039. Fiebig, J., Woodland, A., D'Alessandro, W., Puttmann, W., 2009. Excess methane in continental hydrothermal emissions is abiogenic. Geology 37, 495–498. Fischer, T., Sturchio, N., Stix, J., Arehart, G., Counce, D., Williams, S., 1997. The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. Journal of Volcanology and Geothermal Research 77, 229–253. Fischer, T.P., Giggenbach, W.F., Sano, Y., Williams, S.N., 1998. Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth and Planetary Science Letters 160, 81–96. Fischer, T.P., Hilton, D.R., Zimmer, M.M., Shaw, A.M., Sharp, Z.D., Walker, J.A., 2002. Subduction and recycling of nitrogen along the Central American Margin. Science 297, 1154–1157. Folguera, A., Zapata, T., Ramos, V.A., 2006. Late Cenozoic extension and evolution of the Neuquén Andes. In: Kay, S.M., Ramos, V.A. (Eds.), Evolution of the Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39°S lat): Geology Society of America, 407, pp. 247–266. Folguera, A., Introcaso, A., Giménez, M., Ruiz, F., Martinez, P., Tunstall, C., García Morabito, E., Ramos, V.A., 2007. Crustal attenuation in the Sourthern Andean retroarc (38°–39°30′ S) determined from tectonic and gravimetric studies: the Lonco-Luán asthenospheric anomaly. Tectonophysics 239, 129–147. Gammons, C.H., Wood, S.A., Pedrozo, F., Varekamp, J.C., Nelson, B.J., Shope, C.L., Baffico, G., 2005. Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chemical Geology 222, 249–267. Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochimica et Cosmochimica Acta 44, 2021–2032. Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry 2, 143–161. Giggenbach, W.F., 1988. Geothermal solute equilibria, derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta 52 (12), 2749–2765. Giggenbach, W.F., 1991. Chemical Techniques in Geothermal Exploration. Application of Geochemistry in Geothermal Reservoir Development. UNITAR, New York, pp. 253–273. Giggenbach, W.F., 1992a. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth and Planetary Science Letters 113 (4), 495–510. Giggenbach,W.F., 1992b. The Composition of Gases in Geothermal and Volcanic Systems as a Function of Tectonic Setting. Final Proc. Int. Symp. Water-Rock Interaction, WRI-8, pp. 873–878. Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa, R., Tilling, R. (Eds.), Monitoring and mitigation of Volcano Hazard. Springer-Verlag, Berlin, pp. 222–256. Giggenbach, W.F., 1997. Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in highheatflow sedimentary basins. Geochimica et Cosmochimica Acta 61, 3763–3785. Giggenbach, W.F., Matsuo, S., 1991. Evaluation of results from Second and Third IAVCEI field workshops on Volcanic gases, Mt. Usu, Japan, and White Island, New Zealand. Applied Geochemistry 6, 125–141. Giggenbach, W.F., Poreda, R.J., 1993. Helium isotopic and chemical composition of gases from volcanic-hydrothermal systems in the Philippines. Geothermics 22, 369–380. Giggenbach, W.F., Sano, Y., Wakita, H., 1993. Isotopic composition of helium, CO2, and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochimica et Cosmochimica Acta 57, 3427–3455. Graham, D.W., 2002. Noble gas isotope geochemistry of midocean ridge and ocean island basalts: characterization of mantle source reservoirs. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy & Geochemistry, 47. Mineral. Soc. Am, Washington, DC, pp. 247–317. GVN, 2000a. Bulletin of the Global Volcanism Network. Volcanic Activity Reports 25 (6), 10–14. GVN, 2000b. Bulletin of the Global Volcanism Network. Volcanic Activity Reports 25 (9), 1–3. Hilton, D.R., Hammerschmidt, K., Teufel, S., Friedrichsen, H., 1993. Helium isotope characteristics of Andean geothermal fluids and lavas. Earth and Planetary Science Letters 120, 265–282. Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at subduction zones, in noble gases. In: Procelli, D., Ballentine, C.J.,Wieler, R. (Eds.), Cosmochemistry and Geochemistry, 9. Mineral. Soc. of Am, Washington D. C., pp. 319–370. Hoke, L., Lamb, S., 2007. Cenozoic behind-arc volcanism in the Bolivian Andes, South America: implications for mantle melt generation and lithospheric structure. Journal of the Geological Society of London 164, 795–814. Horita, J., 2001. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochimica et Cosmochimica Acta 65 (12), 1907–1913. Inguaggiato, S., Rizzo, A., 2004. Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water reequilibration and its application to Stromboli volcanic system. Applied Geochemistry 19, 665–673. Jenden, P.D., Kaplan, I.R., Poreda, R.J., Craig, H., 1988. Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon, and nitrogen isotope ratios. Geochimica et Cosmochimica Acta 52, 851–861. JICA (Japan International Cooperation Agency), 1992. The feasibility study on the Northern Neuquén Geothermal Development Project. Ente Provincial de Energía de la Provincial del Neuquén, Argentina, p. 89. Jurío, R.L., 1977. Características geoquímicas de los fluidos termales de Copahue (Neuquén–Argentina). Principales implicancias geotérmicas. Minería 172, 1–11 (in Spanish). Lara, L., Rodriguez, C., Moreno, H., Pérez de Arce, C., 2001. Geocronología K-Ar y geoquímica del volcanismo Plioceno superior-Pleistoceno de los Andes del Sur (39–42°S). Revista Geologica de Chile, 28 (1) 67–90. Li, L., Sadofsky, S.J., Bebout, G.E., 2003. Carbon and nitrogen input fluxes in subduction sediments at the Izu-Bonin and CentralAmerica convergentmargins. EOS. Transactions of the American Geophysical Union 84 (46) (Fall Meet. Suppl., Abstract T32A-0908). Mamyrin, B.A., Tolstikhin, I.N., 1984. Helium Isotopes in Nature. Elsevier, New York, p. 273. Mango, F.D., 2000. The origin of light hydrocarbons. Geochimica et Cosmochimica Acta 64, 1265–1277. Mangue, J., 1978. La laguna del cráter del volcán Copahue (Provincia del Neuquén). Dinámica de su mineralización y relaciones con otras manifestaciones geotérmicas locales. Final Proc. VII Congreso Geológico Argentino, Neuquén, Argentina, pp. 151–175. Martini, M., Bermúdez, A., Delfino, D., Giannini, L., 1997. The thermal manifestation of Copahue volcano area. Final Proc. VIII Congreso Geológico Chileno, Antofagasta, Chile, pp. 352–356. Marty, B., 1995. Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts. Nature 377, 326–328. Marty, A., Jambon, B., 1987. C/3He in volatile fluxes from the solid earth: implications for carbon geodynamics. Earth and Planetary Science Letters 83, 16–26. Marty, B., Zimmermann, L., 1999. Volatiles (He, N, C, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochimica et Cosmochimica Acta 63, 3619–3633. Marty, B., Dauphas, N., 2003. The nitrogen record of crust-mantle interaction and mantle convection from Archean to present. Earth and Planetary Science Letters 206, 397–410. Mas, G.R., Mas, L.C., Bengochea, L., 1996. Alteración ácido-sulfática en el Campo Geotérmico Copahue, Provincia del Neuquén. Revista de la Asociación Geológica Argentina 51 (1), 78–86. Mas, L.C., Mas, G.R., Bengochea, L., 2000. Heatflow of Copahue Geothermal Field, its Relation with Tectonic Scheme. Final Proc. World Geothermal Congress, Tohoku, Japan, pp. 1419–1424. Mas, G.R., Bengochea, L., Mas, L.C., 2007. Burkeite and Hanksite at Copahue, Argentina: The First Occurrence of Sulphate-Carbonate Minerals in a Geothermal Field. Mineralogical Magazine 71 (2), 235–240. McCollom, T.M., Seewald, J.S., 2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chemical Reviews 107, 382–401. Melnick, D., Folguera, A., Ramos, V.A., 2006. Structural control on arc volcanism: the Copahue-Agrio complex, South-Central Andes (37º50´S). Journal of South American Earth Sciences 22, 66–88. Montegrossi, G., Tassi, F., Vaselli, O., Buccianti, A., Garofalo, K., 2001. Sulfur species in volcanic gases. Analytical Chemistry 73, 3709–3715. Muñoz, J.B., Stern, C.R., 1988. The Quaternary volcanic belt of the southern continental margin of South America: transverse structural and petrochemical variations across the segment between 38°S and 39°S. Journal of South American Earth Sciences 1 (2), 147–161. Naranjo, J.A., Polanco, E., 2004. The 2000 AD eruption of Copahue Volcano, Southern Andes. Revista Geologica de Chile 31 (2), 279–292. Nelson, S.T., 2000. A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Communications in Mass Spectrometry 14, 1044–1046. Ozima, M., Podosek, F.A., 2002. Noble Gas Geochemistry. Cambridge University Press, Cambridge, UK. Pacino, M., 1997. The Andean elevation in Argentina–Chile at 39°S from gravity data. Geoacta 22, 91–102. Panarello, H.O., 2002. Características isotópicas y termodinámicas de reservorio del campo geotérmico Copahue–Caviahue, provincia del Neuquén. Revista de la Asociación Geológica Argentina 57 (2), 182–194. Panarello, H.O., Levin, M., Albero, M.C., Sierra, J.L., Gingins, M.O., 1988. Isotopic and geochemical study of the vapour dominated geothermal field of Copahue (Neuquén, Argentina). Revista Brasileira de Geofisica 5 (2), 275–282. Parker, S.R., Gammons, C.H., Pedrozo, F.L.,Wood, S.A., 2008. Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. Journal of Volcanology and Geothermal Research 178, 213–223. Pesce, A., 1989. Evolución volcano-tectónica del complejo efusivo Copahue–Caviahue y su modelo geotérmico preliminar. Revista de la Asociación Geológica Argentina 44 (1–4), 307–327. Pineau, F., Javoy, M., 1983. Carbon isotopes and concentration in mid-oceanic ridge basalts. Earth and Planetary Science Letters 62, 239–257. Poreda, R.J., Farley, K.A., 1992. Rare-gases in Samoan xenoliths. Earth and Planetary Science Letters 113, 129–144en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0377-0273en
dc.relation.eissn1872-6097en
dc.contributor.authorAgusto, M.en
dc.contributor.authorTassi, F.en
dc.contributor.authorCaselli, A. T.en
dc.contributor.authorVaselli, O.en
dc.contributor.authorRouwet, D.en
dc.contributor.authorCapaccioni, B.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorDarrah, T.en
dc.contributor.departmentIDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentinaen
dc.contributor.departmentInstitute of Geosciences and Earth Resources of the National Research Council (CNR-IGG), Via La Pira, 4, 50121, Florence, Italy; Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Florence, Italyen
dc.contributor.departmentIDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentinaen
dc.contributor.departmentInstitute of Geosciences and Earth Resources of the National Research Council (CNR-IGG), Via La Pira, 4, 50121, Florence, Italy ;Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Florence, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentDepartment of Earth and Geological-Environmental Sciences, Piazza Porta San Donato, 1, 40126, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDivision of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIDEAN-GESVA, Departamento Censias Geologicas, Universidad de Buenos Aires, Argentina-
crisitem.author.deptIDEAN-GESVA, Dpto. Cs. Geológicas, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab.2, 1428, Buenos Aires, Argentina-
crisitem.author.deptEarth Science Dept., University of Florence, Via La Pira 4, Florence, 50121, Italy; (3) CNR - IGG, Via La Pira 4, Florence, 50121, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptSchool of Earth Sciences, the Ohio State University, Columbus, Ohio, USA-
crisitem.author.orcid0000-0002-3319-4257-
crisitem.author.orcid0000-0003-3366-3882-
crisitem.author.orcid0000-0002-1705-7279-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1 .pdf1.82 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

38
checked on Feb 10, 2021

Page view(s) 10

454
checked on Apr 24, 2024

Download(s) 50

57
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric