Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8871
DC FieldValueLanguage
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiarabba, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallFrondini, F.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.date.accessioned2014-01-16T11:57:30Zen
dc.date.available2014-01-16T11:57:30Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8871en
dc.description.abstractIn this work we show that the main springs of the central Apennine transport a total amount of heat of ∼2.2 109 J s−1. Most of this heat (57%) is the result of geothermal warming while the remaining 43% is due to gravitational potential energy dissipation. This result indicates that a large area of the central Apennines is very hot with heat flux values 4300 mWm−2. These values are higher than those measured in the magmatic and famously geothermal provinces of Tuscany and Latium and about 1/3 of the total heat discharged at Yellowstone. This finding is surprising because the central Apennines have been thought to be a relatively cold area. Translated by CO2 rich fluids, this heat anomaly suggests the existence of a thermal source such as a large magmatic intrusion at depth. Recent tomographic images of the area support the presence of such an intrusion visible as a broad negative velocity anomaly in seismic waves. Our results indicate that the thermal regime of tectonically active areas of the Earth, where meteoric waters infiltrate and deeply circulate, should be revised on the basis of mass and energy balances of the groundwater systems.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofEarth and planetary science lettersen
dc.relation.ispartofseries/373 (2013)en
dc.subjectheat fluxen
dc.subjectCO2 Earth degassingen
dc.subjectcentral Apennineen
dc.titleAdvective heat transport associated with regional Earth degassing in central Apennine (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber65–74en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1016/j.epsl.2013.04.009en
dc.relation.referencesBaldi, P., Bellani, S., Ceccarelli, A., Fiordelisi, A., Squarci, P., Taffi, L., 1995. Geothermal Anomalies and Structural Features of Gosnold, W.D., 1990. Heat flow in the Great Plains of the United States. J. Geophys. Res. 95, 353–374. Ingebritsen, S.E., Sherrod, D.R., Mariner, R.H., 1989. Heat-flow and hydrothermal circulation in the cascade range, North-Central Oregon. Science 243, 1458–1462. Ingebritsen, S.E., Galloway, D.L., Colvard, E.M., Sorey, M.L., Mariner, R.H., 2001. Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring. J. Volcanol. Geotherm. Res. 111, 1–23. Ingebritsen, S.E., Mariner, R.H., 2010. Hydrothermal heat discharge in the Cascade Range, northwestern United States. J. Volcanol. Geotherm. Res. 196, 208–218. International Organization for Standardization, 1975. Standard Atmosphere. ISO 2533:1975. Lee, T.C., 1991. On terrain corrections in terrestrial heat flow. pure and applied geophysics. Pure Appl. Geophys. 135, 1–13. Loddo, M., Mongelli, F., 1978. Heat flow in Italy. Pure Appl. Geophys. 117, 135–149. Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75–88. Manga, M., 1998. Advective heat transport by low-temperature discharge in the Oregon Cascades. Geology 26, 799–802. Manga, M., Kirchner, J.W., 2004. Interpreting the temperature of water at cold springs and the importance of gravitational potential energy. Water Resour. Res. 40, W05110. Mastrolillo, L., Baldoni, T., Banzato, F., Boscherini, A., Cascone, D., Checcucci, R., Petitta, M., Boni, C., 2009. Quantitative hydrogeological analysis of the carbonate domain of the Umbria region. Ital. J. Eng. Geol. Environ. 1, 137–155. Minissale, A., Vaselli, O., 2011. Karst springs as “natural” pluviometers: constraints on the isotopic composition of rainfall in the Apennines of central Italy. Appl. Geochem. 26, 838–852. Petitta, M., Primavera, P., Tuccimei, P., Aravena, R., 2011. Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ. Earth Sci. 63, 11–30. Regione Abruzzo, 2010. Carta idrogeologica, 15.5 Elaborato 1–5. In: Piano di tutela delle acque, Regione Abruzzo, 〈www.regione.abruzzo.it/pianotutelaacque〉. Smith, L., Chapman, D.S., 1983. On the thermal effects of groundwater flow 1. Regional scale systems. J. Geophys. Res. 88, 593–608. Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M.T., Boschi, E., 2007. TINITALY/01: a new Triangular Irregular Network of Italy. Ann. Geophys. 50, 407–425. Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., Nannipieri, L., 2012. Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 38, 168–170. Tiberti, M.M., Orlando, L., Di Bucci, D., Bernabini, M., Parotto, M., 2005. Regional gravity anomaly map and crustal model of the Central-Southern Apennines (Italy). J. Geodyn. 40, 73–91Southern Tuscany. World Geothermal Congress, Florence, Italy, pp. 1287–1291. Barchi, M.R., Minelli, G.R., Pialli, G., 1998. The CROP 03 profile: a synthesis of results on deep structures of the Northern apennines. Mem. Soc. Geol. Ital. 52, 383–400. Bodmer, Ph., Rybach, L., 1985. Heat flow maps and deep ground water circulation: examples from Switzerland. J. Geodyn. 4, 233–245. Bodri, B., Rybach, L., 1998. Influence of topographically driven convection on heat flow in the Swiss Alps: a model study. Tectonophysics 291, 19–27. Boni, C., Bono, P., Capelli, G., 1986. Schema idrogeologico dell'Italia centrale. Mem. Soc. Geol. Ital. 35, 991–1012. Bono, P., Gonfiantini, R., Alessio, M., Fiori, C., D'Amelio, L., 2005. Stable Isotopes (δ18O, δ2H) and Tritium in Precipitation: Results and Comparison with Groundwater Perched Aquifers in Central Italy, Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate Final Report of a Coordinated Research Project 2000–2004. IAEA, International Atomic Energy Agency, Vienna115–124, pp. Brott, C.A., Blackwell, D.D., Ziagos, J.P., 1981. Thermal and tectonic implications of heat flow in the eastern Snake River Plain, Idaho. J. Geophys. Res. 86, 11709–11734. Brumm, M.,Wang, C.Y., Manga, M., 2009. Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation. Geofluids 9, 195–207. Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., Calore, C., 1995. Geothermal ranking of italian territory. Geothermics 24, 115–129. Čermak, V., Jetel, J., 1985. Heat flow and ground water movement in the Bohemian cretaceous basin (Czechoslovakia). J. Geodyn. 4, 285–303. Chiarabba, C., Bagh, S., Bianchi, I., De Gori, P., Barchi, M., 2010. Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines, Italy) revealed by microseismicity, seismic tomography, and teleseismic receiver functions. Earth Planet. Sci. Lett. 295, 462–476. Chiarabba, C., Di Stefano, R., 2010. Seismicity and deep structure of the northerncentral Apennines. In: Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S., Doglioni, C. (Eds.), The Geology of Italy: Tectonics and Life Along Plate Margins. J. Virtual Explorer, Electronic Edition, Paper 13. Chiarabba, C., Chiodini, G., 2013. Continental delamination and mantle dynamics drive topography, extension and fluid discharge in the Apennines. Geology 41, 715–718. Chiodini, G., Caliro, A., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304, 389–398. Chiodini, G., Valenza, M., Cardellini, C., Frigeri, A., 2008. A new web-based catalog of Earth degassing sites in Italy. Eos 89, 341–342. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31, L07615. Chiodini, G., Comodi, P., Giaquinto, S., Mattioli, B., Zanzari, A.R., 1988. Cold groundwater temperatures and conductive heat flow in the Mt. Amiata geothermal area, Tuscany, Italy. Geothermics 17, 645–656. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. 105, 8423–8434. Della Vedova, B., Bellani, S., Pellis, G., Squarci, P., 2001. Deep temperatures and surface heat flow distribution. In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen, The Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 65–76. Desiderio, G., Ferracuti, L., Rusi, S., Tatangelo, F., 2005. Il contributo degli isotopi naturali 18O e 2H nello studio delle idrostrutture carbonatiche abruzzesi e delle acque mineralizzate nell'area abruzzese e molisana. G. Geol. Appl. 2, 453–458. Di Stefano, R., Kissling, E., Chiarabba, C., Amato, A., Giardini, D., 2009. Shallow subduction beneath Italy: three-dimensional images of the Adriatic–European– Tyrrhenian lithosphere system based on high-quality P wave arrival times. J. Geophys. Res. 114 (B05305). Forster, C., Smith, L., 1989. The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J. Geophys. Res. 94, 9439–9451. Fournier, R.O., 1989. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu. Rev. Earth Planet. Sci. 17, 13–53. Frondini, F., Cardellini, C., Caliro, S., Chiodini, G., Morgantini, N., 2012. Regional groundwater flow and interactions with deep fluids in western Apennine: the case of Narni–Amelia chain (Central Italy). Geofluids 12, 182–196. Gherardi, F., Bono, P., Fiori, C., Diaz Tejeiro, M.F., Gonfiantini, R., 2007. Modeling the Altitude Isotope Effect in Precipitations and Comparison with the Altitude Effect in Groundwater, Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007). IAEA, Vienna, Austria269–278.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0012-821Xen
dc.relation.eissn1385-013Xen
dc.contributor.authorChiodini, G.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorChiarabba, C.en
dc.contributor.authorFrondini, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptDipartimento di Scienze della Terra, Universita` di Perugia-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-8111-3466-
crisitem.author.orcid0000-0002-7539-9541-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2 .pdf4.81 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

24
checked on Feb 7, 2021

Page view(s) 10

349
checked on Mar 27, 2024

Download(s) 50

68
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric