Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8863
DC FieldValueLanguage
dc.contributor.authorallTassi, F.; Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italyen
dc.contributor.authorallNisi, B.; CNR-IGG Institute of Geosciences and Earth Resources, Via G. Moruzzi 1, 56124 Pisa, Italyen
dc.contributor.authorallCardellini, C.; Department of Earth Sciences, University of Perugia, P.zza dell’Università, 06100 Perugia, Italyen
dc.contributor.authorallCapecchiacci, F.; CNR-IGG Institute of Geosciences and Earth Resources, Via La Pira 4, 50121 Florence, Italyen
dc.contributor.authorallDonnini, M.; Department of Earth Sciences, University of Perugia, P.zza dell’Università, 06100 Perugia, Italyen
dc.contributor.authorallVaselli, O.; Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italyen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2014-01-02T07:57:47Zen
dc.date.available2014-01-02T07:57:47Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8863en
dc.description.abstractMeasurements of soil fluxes of hydrothermal gases, with special emphasis on C6H6, as well as chemical composition of mono-aromatic compounds in fumaroles and air, were carried out in April 2012 at the Solfatara crater (Campi Flegrei, Southern Italy) to investigate the distribution and behavior of these species as they migrate through the soil from their deep source to the atmosphere. Soil fluxes of CO2, CH4 and C6H6 exhibit good spatial correlation, suggesting that diffuse degassing is mainly controlled by local fractures. The calculated total output of diffuse C6H6 from Solfatara is 0.10 kg day 1, whereas fluxes of CO2 and CH4 are 79 103 and 1.04 kg day 1, respectively. A comparison between soil gas fluxes and fumarole composition reveals that within the crater soil CH4 is significantly affected by oxidation processes, which are more efficient for low gas fluxes, being dependent on the residence time of the uprising hydrothermal gases at shallow depth. Benzene degradation, mainly proceeding through oxidation via benzoate, seems to be strongly controlled by the presence of a shallow SO2 4 -rich aquifer located in the central and southwestern sectors of the crater, suggesting that the process is particularly efficient when SO2 4 acts as terminal electron acceptor (SO4 reduction). Relatively high C6H6/C7H8 ratios, typical of hydrothermal fluids, were measured in air close to the main fumarolic field of Solfatara crater. Here, C6H6 concentrations, whose detection limit is 0.1 lgm 3, are more than one order of magnitude higher than the limit value for ambient air (5 lgm 3). This suggests that hydrothermal fluids have a strong impact on air quality in the immediate surroundings of the fumarolic vents. Significant concentrations of endogenous mono-aromatics were also detected in air samples collected from the northern and western sides of the crater, where these gas compounds are mostly fed by diffuse degassing through the crater bottom soil.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofApplied geochemistryen
dc.relation.ispartofseries/35 (2013)en
dc.subjecthydrothermal gasesen
dc.subjectSolfatara crateren
dc.titleDiffuse soil emission of hydrothermal gases (CO2, CH4, and C6H6) at Solfatara crater (Campi Flegrei, southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber142–153en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1016/j.apgeochem.2013.03.020en
dc.relation.referencesAllard, P., Maiorani, A., Tedesco, D., Cortecci, G., Turi, B., 1991. Isotopic study of the origin of sulfur and carbon in Solfatara Fumaroles, Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 48, 139–159. Anderson, R.T., Lovley, D.R., 2000. Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ. Sci. Technol. 34, 2261–2266. Barberi, F., Corrado, G., Innocenti, F., Luongo, G., 1984. Phlegraean fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47, 175–185. Barlaz, M.A., Green, R.B., Chanton, J.P., Goldsmith, C.D., Hater, G.R., 2004. Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ. Sci. Technol 38, 4891–4899. Berndt, T., Böge, O., Herrmann, H., 1999. On the formation of benzene oxide/oxepin in the gas-phase reaction of OH radicals with benzene. Chem. Phys. Lett. 314, 435–442. Bonafede, M., Mazzanti, M., 1998. Modelling gravity variations consistent with ground deformation in the Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 81, 137–157. Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J., 2007. The origin of the fumaroles of La Solfatara (Campi Flegrei, Sotuh Italy). Geochim. Cosmochim. Acta 71, 3040–3055. Capaccioni, B., Mangani, F., 2001. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinous monitoring in the Campi Flegrei (Italy). Earth Planet. Sci. Lett. 188, 543–555. Capaccioni, B., Martini, M., Mangani, F., Giannini, L., Nappi, G., Prati, F., 1993. Light hydrocarbons in gas-emissions from volcanic areas and geothermal fields. Geochem. J. 27, 7–17. Capaccioni, B., Martini, M., Mangani, F., 1995. Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bull. Volcanol. 56, 593–600. Carapezza, M.L., Granieri, D., 2004. CO2 soil flux at Vulcano (Italy): comparison of active and passive methods. Appl. Geochem. 19, 73–88. Carapezza, M., Gurrieri, S., Nuccio, P.M., Valenza, M., 1984. CO2 and H2S concentrations in the atmosphere at the Solfatara of Pozzuoli. Bull. Volcanol. 47, 287–293. Cardellini, C., Chiodini, G., Frondini, G., 2003a. Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108, 2425. http://dx.doi.org/10.1029/2002JB002165 Cardellini, C., Chiodini, G., Frondini, F., Granieri, D., Lewicki, J., Peruzzi, L., 2003b. Accumulation chamber measurements of methane fluxes: application to volcanic-geothermal areas and landfills. Appl. Geochem. 18, 45–54. Castaldi, S., Fierro, A., 2005. Soil–atmosphere methane exchange in undisturbed and burned Mediterranean shrubland of Southern Italy. Ecosystems 8, 182–190. Castaldi, S., Tedesco, D., 2005. Methane production and consumption in an active volcanic environment of Southern Italy. Chemosphere 58, 131–139. Chaudhuri, B.K., Wiesmann, U., 1995. Enhanced anaerobic degradation of benzene by enrichment of mixed microbial culture and optimization of the culturemedium. Appl. Microbiol. Biotechnol. 43, 178–187. Chiodini, G., 2009. CO2/CH4 ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes. Geophys. Res. Lett. 36, L02302. http://dx.doi.org/10.1029/2008GL036347. Chiodini, G., Cioni, R., Magro, G., Marini, L., Panichi, C., Raco, B., Russo, M., 1996a. Chemical and isotopic variations of Bocca Grande fumarole (Solfatara volcano, Phlegrean Fields). Acta Vulcanol. 8, 129–138. Chiodini, G., Frondini, F., Raco, B., 1996b. Diffuse emission of CO2 from the Fossa crater, Vulcano Island. Bull. Volcanol. 58, 41–50. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Cioni, R., Guidi, M., Magro, G., Marini, L., Panichi, C., Raco, B., Russo, M., 2000. Geochemical monitoring of the Phlegrean fields and Vesuvius (Italy) in 1996. Acta Vulcanol. 12, 117–119. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106, 16213–16221. Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., Russo, M., 2003. Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy). Geophys. Res. Lett. 30, 1434. http://dx.doi.org/10.1029/ 2002GL016790. Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., 2005. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J. Geophys. Res. 110, B08204. http://dx.doi.org/10.1029/ 2004JB003542. Chiodini, G., Caliro, S., Cardellini, C., Avino, R., Granieri, D., Schmidt, A., 2008. Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet. Sci. Lett. 274, 372–379. Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., Avino, R., Baldini, A., Donnini, M., Minopoli, C., 2010. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J. Geophys. Res. 115, B03205. http://dx.doi.org/10.1029/2008JB006258. Chiodini, G., Avino, R., Caliro, S., Minopoli, C., 2011. Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei). Ann. Geophys. 54 (2), 151–160. Chiodini, G., Caliro, S., De Martino, P., Avino, R., Gherardi, F., 2012. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40, 943–946. Cioni, R., Corazza, E., Marini, L., 1984. The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegraean Fields (Italy). Bull. Volcanol. 47, 295–302. Cioni, R., Corazza, E., Fratta, M., Guidi, M., Magro, G., Marini, L., 1989. Geochemical precursors at Solfatara Volcano, Pozzuoli (Italy). In: Latter, J.H. (Ed.), Volcanic Hazard. Springer Verlag, Berlin, pp. 384–398. D’Alessandro, W., Bellomo, S., Brusca, L., Fiebig, J., Longo, M., Martelli, M., Pecoraino, G., Salerno, F., 2009. Hydrothermal methane fluxes from the soil at Pantelleria island (Italy). J. Volcanol. Geotherm. Res. 187, 147–157. David, M., 1977. Geostatistical Ore Reserve Estimation. Elsevier Sci., New York. De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson, W.A., Spera, F.J., Belkin, H.E., 2001. New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Mineral. Petrol. 73, 47–65. Deino, A.L., Orsi, G., De Vita, S., Piochi, M., 2004. The age of the Neapolitan Yellow Tuff caldera forming eruption (Campi Flegrei caldera Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170. Di Vito, M.A., Lirer, L., Mastrolorenzo, G., Rolandi, G., 1987. The Monte Nuovo eruption (Campi Flegrei, Italy). Bull. Volcanol. 49, 608–615. Dincer, F., Odabasi, M., Muezzinoglu, A., 2006. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J. Chrom. A 1122, 222–229. Dueñas, C., Fernandez, M.C., Carretero, J., Liger, E., 1996. Methane uptake in soils of southern Spain estimated by two different techniques: static chamber and 222Radon flux and soil air concentration profiles. Atmos. Environ. 30, 545–552. Dvorak, J.J., Gasparini, P., 1991. History of earthquakes and vertical ground movements in Campi Flegrei caldera, Southern Italy: a comparison of precursor events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968. J. Volcanol. Geotherm. Res. 48, 77–92. Etiope, G., 1997. Evaluation of a micro-gas chromatographic technique for environmental analyses of CO2 and C1–C6 alkanes. J. Chromatogr. 775, 243– 249. Etiope, G., 1999. Subsoil CO2 and CH4 and their advective transfer from faulted grassland to the atmosphere. J. Geophys. Res. 104D, 16889–16894. Etiope, G., 2009. Natural emissions of methane from geological seepage in Europe. Atmos. Environ. 43, 1430–1443. Etiope, G., Klusman, R.W., 2010. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global Planet. Change 72, 265–274. Etiope, G., Fridriksson, T., Italiano, F., Winiwarter, W., Theloke, J., 2007. Natural emissions of methane from geothermal and volcanic sources in Europe. J. Volcanol. Geotherm. Res. 165, 76–86. Etiope, G., Oehler, D.Z., Allen, C.C., 2011. Methane emissions from Earth’s degassing: implications for Mars. Planet. Space Sci. 59, 182–195. Gerlach, T.M., Doukas, M.P., McGee, K.A., Klesser, R., 2001. Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain California, 1995–1999. Chem. Geol. 177, 85–99. Giggenbach, W.F., Goguel, R.L., 1989. Method for the collection and analysis of geothermal and volcanic water and gas samples. NZ-DSIR Report, CD 2387, 53. Gottsmann, J., Folch, A., Rymer, H., 2006. Unrest at Campi Flegrei: a contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling. J. Geophys. Res. 111, B07203. http://dx.doi.org/10.1029/ 2005JB003745. Granieri, D., Chiodini, G., Marzocchi, W., Avino, R., 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Planet. Sci. Lett. 212, 167–179. Granieri, D., Avino, R., Chiodini, G., 2010. Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bull. Volcanol. 72, 103–118. Heider, J., Spormann, A.M., Beller, H.R., Widdel, F., 1998. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22, 459–473. Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., Cao, G., Mariko, S., 2004. Methane emissions from different vegetation zones in a Qinghai–Tibetan Plateau wetland. Soil Biol. Biochem. 36, 737–748. Horowitz, A., Shelton, D.R., Cornell, C.P., Tiedje, J.M., 1982. Anaerobic degradation of aromatic compounds in sediments and digested sludge. Dev. Ind. Microbiol. 23, 433–444. Hutchins, S.R., Sewell, G.W., Kovacs, D.A., Smith, G.A., 1991. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25, 68–76. Hutchinson, G.L., Mosier, A.R., 1981. Improved soil cover method for field measurements of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45, 311–316. Huttunen, J.T., Nykänen, H., Turunen, J., Martikainen, P.J., 2003. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos. Environ. 37, 147–151. Italiano, F., Nuccio, P.M., Valenza, M., 1984. Geothermal energy release at the Solfatara of Pozzuoli (Phlegraean Fields): phreatic and phreatomagmatic explosion risk implications. Bull. Volcanol. 47, 275–285. Johnson, S.J., Woolhouse, K.J., Prommer, H., Barry, D.A., Christofi, N., 2003. Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng. Geol. 70, 343–349. Kazumi, J., Caldwell, M.E., Suflita, J.M., Lovley, D.R., Young, L.Y., 1997. Anaerobic degradation of benzene in diverse anoxic environments. Environ. Sci. Technol. 31, 813–818. Kjeldsen, P., Dalager, A., Broholm, K., 1997. Attenuation of methane and non methane organic compounds in landfill gas affected soils. J. Air Waste Manage. Assoc. 47, 1268–1275. Klotz, B., Barnes, I., Becker, K.H., Golding, B.T., 1997. Atmospheric chemistry of benzene oxide/oxepin. J. Chem. Soc. Faraday Trans. 93, 1507–1516. Klusman, R.W., LeRoy, M.P., 1996. Potential for use of gas measurements in surface exploration for geothermal resources. Geotherm. Resour. Council Trans. 20, 331–338. Klusman, R.W., Moore, J.N., LeRoy, M.P., 2000. Potential for surface gas flux measurements in exploration and surface evaluation of geothermal resources. Geothermics 29, 637–670. Krumholtz, L.R., Caldwell, M.E., Suflita, J.M., 1996. Biodegradation of ‘BTEX’ hydrocarbons under anaerobic conditions. In: Crawford, R.L., Crawford, D.L. (Eds.), Bioremediation: Principles and Applications. Cambridge Univ., Press, Cambridge, pp. 61–99. Kuran, P., Sojak, J., 1996. Environmental analysis of volatile organic compounds in water sediment by gas chromatography. J. Chromatogr. A 733, 119–141. Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P.A., Harris, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water. Methods in Ecology. Blackwell Science Cambridge University Press, London, pp. 14–51. Lovley, D.R., 1997. Potential for anaerobic bioremediation of BTEX in petroleumcontaminated aquifers. J. Ind. Microbiol. 18, 75–81. Lovley, D.R., Coates, J.D., Woodward, J.C., Phillips, E.J.P., 1995. Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61, 953–958. Martini, M., 1986. Thermal activity and ground deformation at Phlegrean Fields, Italy: precursors of eruptions or fluctuations of quiescent volcanism? A contribution of geochemical studies. J. Geophys. Res. 91, 12255–12260. Mølhave, L., Bach, B., Pedersen, O.F., 1986. Human reactions to low concentrations of volatile organic compounds. Environ. Int. 12, 167–175. Orsi, G., de Vita, S., Di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Otter, L.B., Scholes, M.C., 2000. Methane sources and sinks in a periodically flooded South African savanna. Global Biogeochem. Cycl. 14, 97–111. Phelps, C.P., Kazumi, J., Young, L.Y., 1996. Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol. Lett. 145, 433–437. Potter, C.S., Davidson, E.A., Verchot, L.V., 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32, 2219– 2246.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0883-2927en
dc.relation.eissn1872-9134en
dc.contributor.authorTassi, F.en
dc.contributor.authorNisi, B.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorCapecchiacci, F.en
dc.contributor.authorDonnini, M.en
dc.contributor.authorVaselli, O.en
dc.contributor.authorAvino, R.en
dc.contributor.authorChiodini, G.en
dc.contributor.departmentDepartment of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italyen
dc.contributor.departmentCNR-IGG Institute of Geosciences and Earth Resources, Via G. Moruzzi 1, 56124 Pisa, Italyen
dc.contributor.departmentDepartment of Earth Sciences, University of Perugia, P.zza dell’Università, 06100 Perugia, Italyen
dc.contributor.departmentCNR-IGG Institute of Geosciences and Earth Resources, Via La Pira 4, 50121 Florence, Italyen
dc.contributor.departmentDepartment of Earth Sciences, University of Perugia, P.zza dell’Università, 06100 Perugia, Italyen
dc.contributor.departmentDepartment of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNR-IGG Institute of Geosciences and Earth Resources, Via G. Moruzzi 1, 56124 Pisa, Italy-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptCNR Perugia-
crisitem.author.deptEarth Science Dept., University of Florence, Via La Pira 4, Florence, 50121, Italy; (3) CNR - IGG, Via La Pira 4, Florence, 50121, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-3319-4257-
crisitem.author.orcid0000-0003-0853-8035-
crisitem.author.orcid0000-0002-3058-1489-
crisitem.author.orcid0000-0001-7270-7783-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
5 Tassietal,SolfataraBenzene,AG.pdf3.38 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

23
checked on Feb 10, 2021

Page view(s) 50

339
checked on Apr 20, 2024

Download(s)

25
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric