Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8853
DC FieldValueLanguage
dc.contributor.authorallMikhailov, A.; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russiaen
dc.contributor.authorallBelehaki, A.; Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Metaxa and Vas. Pavlou, Palaia Penteli, 15236 Greeceen
dc.contributor.authorallPerrone, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZolesi, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallTsagouri, I.; Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Metaxa and Vas. Pavlou, Palaia Penteli, 15236 Greeceen
dc.date.accessioned2013-12-20T12:35:40Zen
dc.date.available2013-12-20T12:35:40Zen
dc.date.issued2013-12en
dc.identifier.urihttp://hdl.handle.net/2122/8853en
dc.description.abstractA principal possibility to retrieve basic thermospheric parameters (neutral temperature Tex, atomic [O] and molecular [O2] oxygen as well as molecular nitrogen [N2] concentrations) from the observed daytime electron density profiles Ne(h) in the equatorial F2-region is demonstrated for the first time. The reduction of a 2D continuity equation for electron concentration in the low-latitude F2-region at the geomagnetic equator (I = 0) results in a simple 1D equation which can be efficiently solved. The method was tested using Jicamarca Incoherent Scatter Radar (ISR) and Digisonde Ne(h) profiles for the periods when CHAMP and GRACE neutral gas density observations are available in the vicinity of the Jicamarca Observatory. The retrieved from ISR Ne(h) neutral gas densities were shown to be close to the observed ones (MRD < 10%) being within the announced absolute uncertainty (10–15%) of the neutral gas density observations and more successful than the predictions of the empirical models JB-2008 (MRD = 32%) and MSISE-00 (MRD = 27%) for the analyzed cases. The implementation of the method with Jicamarca Digisonde Ne(h) profiles has also shown acceptable results especially for solar minimum conditions (MRD ~ 12%) and higher prediction accuracy than modern empirical models provide. This finding seems to open a way for the practical exploitation of the method for thermospheric monitoring purposes.en
dc.language.isoEnglishen
dc.publisher.nameEDP Sciencesen
dc.relation.ispartofJ. Space Weather Space Clim.en
dc.relation.ispartofseries/ 3 (2013)en
dc.subjectthermosphereen
dc.subjectionosphere (equatorial)en
dc.subjectmodellingen
dc.subjectdragen
dc.subjectmonitoringen
dc.titleRetrieval of thermospheric parameters from routinely observed F2-layer Ne(h) profiles at the geomagnetic equatoren
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberA15en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and compositionen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.identifier.doi10.1051/swsc/2013038en
dc.relation.referencesBanks, P.M. and G. Kockarts, Aeronomy, Academic Press, New York, London,1973. Balsley, B.B., D.A. Carter, R.F. Woodman, Vertical ionization drifts in the lower equatorial ionosphere and the meridional current systems, J. Geophys. Res., 81, 1296-1300, 1976. Belehaki A., I. Tsagouri, I. Kutiev, P. Marinov, and S. Fidanova, Upgrades to the topside sounders model assisted by Digisonde (TaD) and its validation at the topside ionosphere, J. Space Weather Space Clim. 2 A20, DOI: http://dx.doi.org/10.1051/swsc/2012020, 2012. Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, AIAA/AAS Astrodynamics Specialist Conference 18-21 August 2008, Honolulu, Hawaii, 19, 2008. Bruinsma, S., D. Tamagnan, and R. Biancale, Atmospheric density derived from CHAMP/STAR accelerometer observations, Planet Space Sci., 52, 297-312, 2004. Bruinsma, S., J. Forbes, R.S. Nerem, and X. Zhang, , Thermospheric density response to the 20-21 November CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, doi:10.1029/2005JA011284, 2006. Chuo, Y.-J., C.-C. Lee, W.-S. Chen, B.W. Reinisch, Comparison between bottomside ionospheric profile parameters retrieved from FORMOSAT3 measurements and ground-based observations collected at Jicamarca, J. Atmos. Solar-Terr. Phys., 73, 1665-1673, 2011. Deminov, M.G., V.K. Kozlov, and Yu.S. Sitnov, Ionospheric O+ ions distribution over geomagnetic equator, "Researches on Solar-Terrestrial Physics", Moscow, IZMIRAN, 22-30, 1977 (in Russian). Doornbos, E., Thermospheric Density and Wind Determination from Satellite Dynamics, 2012, http://www.springer.com/978-3-642-25128-3. Fejer, B.G., The equatorial ionospheric electric fields. A review, J. Atmos. Solar-Terr. Phys., 43, 377-385, 1981. Fejer, B. and L. Scherliess, Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102, A11, 24,047-24,056, 1997. Fejer, B.G., J.W. Jensen, and S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res., 113, A05304, doi:10.1029/2007JA012801, 2008. Hedin, A.E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649-4662, 1987. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Company, 1972. Ivanov-Kholodny, G.S. and G.M. Nikoljsky, The Sun and the Ionosphere, Nauka, Moscow, 1969, pp. 455 (in Russian). Galkin, I.A., G. M. Khmyrov, A. V. Kozlov, B. W. Reinisch, X. Huang and V. V. Paznukhov, The ARTIST 5, Radio Sounding and Plasma Physics, AIP Proceedings, 974, 2008. Kudeki, E., S. Bhattachayya, and R.F. Woodman, A new approach in incoherent scatter F region ExB drift measurements at Jicamarca, J. Geophys. Res., 104, A12, 28,145-28,162, 1999. Kutiev I., P. Marinov, S. Fidanova, A. Belehaki and I. Tsagouri, Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes, J. Space Weather Space Clim. 2 A21, DOI: http://dx.doi.org/10.1051/swsc/2012021, 2012. Leshchinskaya T.Yu. and A.V. Mikhailov, Description of the electron density distribution above the geomagnetic equator in the daytime F2 region of the ionosphere, Geomag. and Aeronom., 24, 739-744, 1984. Lilensten, J., Lj. R. Cander, M. T. Rietveld, P. S. Cannon, and M. Barthelemy, Comparison of EISCAT and ionosonde electron densities: application to a ground-based ionospheric segment of a space weather programme, Annales Geophysicae, 23, 183–189, 2005. McNamara, L.F., D.L. Cooke, C.E.Valladares, and B.W. Reinisch, Comparison of CHAMP and Digisonde plasma frequencies at Jicamarca, Peru, Radio Sci., 42, RS2005, doi:10.1029/2006RS003491, 2007. Mikhailov, A.V. and J. Lilensten, A revised method to extract thermospheric parameters from incoherent scatter observations, Ann. Geophysics, Supp., 47, N2/3, 985-1008, 2004. Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, doi:10.1051/swsc/2012002, 2012. Munninghoff, D.E., Ion and electron temperatures in the topside ionosphere, Aeronomy Rep., 86, Aeronom. Lab. Univ. Illinois, Urbana, 1979. Nava, B., S. M. Radicella, and F. Azpilicueta, Data ingestion into NeQuick 2, Radio Sci., 46, RS0D17, doi:10.1029/2010RS004635, 2011. Nsumei, P., B. W. Reinisch, X. Huang, and D. Bilitza, New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI Model and the GIRO real time data, Radio Sci., doi:10.1029/2012RS004989, 2012. Nusinov, A.A., Solar activity dependence of the intensity of shortwave radiation, Geomag. i Aeronom., 24, 529-536, 1984 (in Russian). Nusinov, A.A., Models for prediction of EUV and X-ray solar radiation based on 10.7-cm radio emission, Proc. Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, Boulder, Co., July 1992, Ed. R.F. Donnely, NOAA ERL. Boulder, Co., USA, 354-359, 1992. Picone, J.M., A.E., Hedin, D.P., Drob, and A.C., Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues, J. Geophys. Res., 107, 1468, doi:10.1029/2002JA009430, 2002. Reinisch, B.W. and X. Huang, Automatic calculation of electron density profiles from digital ionograms, 3, Processing of bottomside ionograms, Radio Sci., 18, 477-492, 1983. Reinisch, B. W., and X. Huang, Deducing topside profiles and total electron content from bottomside ionograms, Adv. Space Res., 27(1), 23–30, 2001. Reinisch, B. W., I. A. Galkin, G. Khmyrov, A. Kozlov, and D. F. Kitrosser, Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci. 2: 241-247, 2004a. Reinisch, B. W., X.-Q. Huang, A. Belehaki, J.-K. Shi, M.-L. Zhang, and R. Ilma, Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements, Adv. Space Res., 34, 2026–2031, 2004b. Reinisch, B.W., X. Huang, I. A. Galkin, V. Paznukhov, and A. Kozlov, Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes, J. Atmos. and Solar-Terr. Phys., 67, 1054-1062, 2005. Reinisch, B. W., I. A. Galkin, G. M. Khmyrov, A. V. Kozlov, I. A. Lisysyan, K. Bibl, G. Cheney, D. Kitrosser, S. Stelmash, K. Roche, Y. Luo, V. V. Paznukhov, and R. Hamel, Advancing digisonde technology: the DPS-4D, in Radio Sounding and Plasma Physics, AIP Conf. Proc. 974, 127-143, 2008. Richards, P.G., Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613,.2011. Richards, P.G., and D.G. Torr, Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 93, 4060-4066, 1988. Richards, P.G., J.A. Fennelly, and D.G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981-8992, 1994. Scherliess, L. and B.G. Fejer, Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104, A4, 6829-6842, 1999. Shim, J.S., M. Kuznetsova, L. Rastatter, D. Bilitza, M. Butala, M. Codrescu, B.A. Emery, B. Foster, T.J. Fuller-Rowell, J. Huba, A.J. Mannucci, X. Pi, A. Ridley, L. Scherliess, R.W. Schunk, J.J. Sojka, P. Stephens, D.C. Thompson, D. Weimer, L. Zhu, and E. Sutton, CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/hermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations, Space Weather, 10, S10004, doi:10.1029/2012SW000851, 2012. Stoneback, R.A., R.A. Heelis, A.G. Burrell, W.R. Coley, B.G. Fejer, and E. Pacheco, Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009, J. Geophys. Res., 116, A12327, doi:10.1029/2011JA016712, 2011. Sutton, E.K., Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite Accelerometer Data , A thesis submitted to the Faculty of the Graduate School of the University of Colorado for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences, 2008. Titheridge, J. E. The real height analysis of ionograms: A generalized formulation, Radio Sci., 23(5), 831–849, 1988. Torr, M.R., D.G. Torr, R.A. Ong, and H.E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771-774, 1979. Varney, R.H., D.L. Hysell, and J.D. Huba, Sensitivity studies of equatorial topside electron and ion temperatures, J. Geophys. Res., 116, A06321, doi:10.1029/2011JA016549, 2011.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.contributor.authorMikhailov, A.en
dc.contributor.authorBelehaki, A.en
dc.contributor.authorPerrone, L.en
dc.contributor.authorZolesi, B.en
dc.contributor.authorTsagouri, I.en
dc.contributor.departmentPushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russiaen
dc.contributor.departmentInstitute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Metaxa and Vas. Pavlou, Palaia Penteli, 15236 Greeceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentInstitute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Metaxa and Vas. Pavlou, Palaia Penteli, 15236 Greeceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptPushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia-
crisitem.author.deptInstitute for Space Applications and Remote Sensing, National Observatory of Athens, Palaia Penteli, Greece"-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptNational Observatory of Athens, Institute for Space Applications and Remote Sensing, Palaia Penteli 15236, Greece-
crisitem.author.orcid0000-0002-9270-5387-
crisitem.author.orcid0000-0003-4335-0345-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
swsc120060.pdf1.2 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s) 20

257
checked on Apr 17, 2024

Download(s) 50

134
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric