Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Bartiromo, A.*
Guignard, G.*
Barone Lumaga, M. R.*
Barattolo, F.*
Chiodini, G.*
Avino, R.*
Guerriero, G.*
Barale, G.*
Title: The cuticle micromorphology of in situ Erica arborea L. exposed to long-term volcanic gases
Title of journal: Environmental and experimental botany
Series/Report no.: /87 (2013)
Publisher: Elsevier Science Limited
Issue Date: 2013
Keywords: Phlegrean Fields
Erica arborea
Volcanic gases
Cuticle ultrastructure
Abstract: Epidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.
Appears in Collections:03.04.04. Ecosystems
03.02.04. Measurements and monitoring
04.08.01. Gases
04.04.12. Fluid Geochemistry
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
10 .pdf2.28 MBAdobe PDFonly authorized users View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA