Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8841
DC FieldValueLanguage
dc.contributor.authorallPichavant, M.; CNRS-Orleansen
dc.contributor.authorallDi Carlo, I.; CNRS-Orleansen
dc.contributor.authorallRotolo, S. G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallScaillet, B.; CNRS-Orleansen
dc.contributor.authorallBurgisser, A.; CNRS-Orleansen
dc.contributor.authorallLe GAll, N.; CNRS-Orleansen
dc.contributor.authorallMArtel, C.; CNRS-Orleansen
dc.date.accessioned2013-12-11T09:41:33Zen
dc.date.available2013-12-11T09:41:33Zen
dc.date.issued2013-07en
dc.identifier.urihttp://hdl.handle.net/2122/8841en
dc.description.abstractTo testmechanisms of basalticmagma degassing, continuous decompressions of volatile-bearing (2.7–3.8 wt% H2O, 600–1,300 ppm CO2) Stromboli melts were performed from 250–200 to 50–25 MPa at 1,180–1,140 C.Ascent rates were varied from 0.25 to *1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubblefree to bubble-rich, the latter with bubble number densities from 104 to 106 cm-3, similar to Stromboli pumices. Vesicularities range from 0 to *20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the finalmelt CO2 concentration. High vesicularity charges have glass CO2 concentrations that follow theoretical equilibrium degassing paths, whereas glasses from low vesicularity charges show marked deviations from equilibrium, with CO2 concentrations up to one order of magnitude higher than solubilities. FTIR profiles and maps reveal glass CO2 concentration gradients near the gas–melt interface. Our results stress the importance of bubble nucleation and growth, and of volatile diffusivities, for basaltic melt degassing. Two characteristic distances, the gas interface distance (distance either between bubbles or to gas–melt interfaces) and the volatile diffusion distance, control the degassing process. Melts containing numerous and large bubbles have gas interface distances shorter than volatile diffusion distances, and degassing proceeds by equilibrium partitioning of CO2 and H2O between melt and gas bubbles. For melts where either bubble nucleation is inhibited or bubble growth is limited, gas interface distances are longer than volatile diffusion distances. Degassing proceeds by diffusive volatile transfer at the gas– melt interface and is kinetically limited by the diffusivities of volatiles in the melt. Our experiments show that CO2-oversaturated melts can be generated as a result of magma decompression. They provide a new explanation for the occurrence of CO2-rich natural basaltic glasses and open new perspectives for understanding explosive basaltic volcanismen
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlag Germanyen
dc.relation.ispartofContributions to Mineralogy and Petrologyen
dc.relation.ispartofseries/166 (2013)en
dc.subjectBasaltic meltsen
dc.subjectvolatilesen
dc.subjectdecompression experimentsen
dc.subjectmagma degassingen
dc.titleGeneration of CO2-rich melts during basalt magma ascent and degassingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber545-561en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1007/s00410-013-0890-5en
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0010-7999en
dc.relation.eissn1432-0967en
dc.contributor.authorPichavant, M.en
dc.contributor.authorDi Carlo, I.en
dc.contributor.authorRotolo, S. G.en
dc.contributor.authorScaillet, B.en
dc.contributor.authorBurgisser, A.en
dc.contributor.authorLe GAll, N.en
dc.contributor.authorMArtel, C.en
dc.contributor.departmentCNRS-Orleansen
dc.contributor.departmentCNRS-Orleansen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentCNRS-Orleansen
dc.contributor.departmentCNRS-Orleansen
dc.contributor.departmentCNRS-Orleansen
dc.contributor.departmentCNRS-Orleansen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNRS Orleans, Francia-
crisitem.author.deptCNRS Orleans, Francia-
crisitem.author.deptUniversità degli Studi di Palermo-
crisitem.author.deptCNRS Orleans, Francia-
crisitem.author.deptCNRS-Orleans-
crisitem.author.deptCNRS-Orleans-
crisitem.author.orcid0000-0001-7523-1338-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Pich et al CMP 13.pdf982.42 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

47
checked on Feb 10, 2021

Page view(s) 50

203
checked on Mar 27, 2024

Download(s)

42
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric