Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8826
DC FieldValueLanguage
dc.contributor.authorallDi Napoli, R.; Dipartimento DiSTeM, Università degli Studi di Palermoen
dc.contributor.authorallFederico, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallAiuppa, A.; Dipartimento DiSTeM, Università degli Studi di Palermo- INGV-PAen
dc.contributor.authorallD'Antonio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallValenza, M.; Dipartimento DiSTeM, Università degli Studi di Palermo; INGV-PAen
dc.date.accessioned2013-12-03T11:51:31Zen
dc.date.available2013-12-03T11:51:31Zen
dc.date.issued2012-12-10en
dc.identifier.urihttp://hdl.handle.net/2122/8826en
dc.description.abstractThe intricate pathways of fluid–mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in variable proportions) with Ischia’s reservoir rocks (the Mount Epomeo Green Tuff units; MEGT). The mineral assemblage and composition of such MEGT units were initially characterised by ad hoc designed optical microscopy and electron microprobe analysis, showing that phenocrysts (dominantly alkali–feldspars and plagioclase) are set in a pervasively altered (with abundant clay minerals and zeolites) groundmass. Reaction of infiltrating waters with MEGT minerals was simulated over a range of realistic (for Ischia) temperatures (95–260 C) and CO2 fugacities (10 0.2 to 100.5) bar. During the model runs, a set of secondary minerals (selected based on independent information from alteration minerals’ studies) was allowed to precipitate from model solutions, when saturation was achieved. The compositional evolution of model solutions obtained in the 95– 260 C runs were finally compared with compositions of Ischia’s thermal groundwaters, demonstrating an overall agreement. Our simulations, in particular, well reproduce the Mg-depleting maturation path of hydrothermal solutions, and have end-ofrun model solutions whose Na–K–Mg compositions well reflect attainment of full-equilibrium conditions at run temperature. High-temperature (180–260 C) model runs are those best matching the Na–K–Mg compositions of Ischia’s most chemically mature water samples, supporting quenching of deep-reservoir conditions for these surface manifestations; whilst Fe, SiO2 and, to a lesser extent, SO4 contents of natural samples are better reproduced in low-temperature (95 C) runs, suggesting that these species reflect conditions of water–rock interaction in the shallow hydrothermal environment. The ability of model runs to reproduce the compositional features of Ischia’s thermal manifestations, demonstrated here, adds supplementary confidence on reaction path modelling as a realistic and insightful representation of mineral–fluid hydrothermal reactions. Our results, in particular, demonstrate the significant impact of host rock minerals’ assemblage in governing the paths and trends of hydrothermal fluids’ maturation.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofGeochimica et cosmochimica actaen
dc.relation.ispartofseries/105(2013)en
dc.subjectIschiaen
dc.subjectHydrothermal systemsen
dc.subjectEQ3-6en
dc.subjectGeochemical modellingen
dc.titleQuantitative models of hydrothermal fluid–mineral reaction: The Ischia caseen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber108-129en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.identifier.doi10.1016/j.gca.2012.11.039en
dc.relation.referencesAiuppa A., Federico C., Allard P., Gurrieri S. and Valenza M. (2005) Trace metal modelling of groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius (Southern Italy). Chem. Geol. 216, 289–311. Aiuppa A., Avino R., Brusca L., Caliro S., Chiodini G., D’Alessandro W., Favara R., Federico C., Ginevra W., Inguaggiato S., Longo M., Pecoraino G. and Valenza M. (2006) Mineral control of arsenic content in thermal waters from volcanohosted hydrothermal systems: insights from island of Ischia and Phlegrean Field (Campanian Volcanic Province, Italy). Chem. Geol. 229, 313–330. Ambrosio M., Doveri M., Fagioli M. T., Marini L., Principe C. and Raco B. (2010) Water-rock interaction in the magmatichydrothermal system of Nisyros Island (Greece). J. Volcanol. Geotherm. Res. 192, 57–68. Barra D., Cinque A., Italiano A. and Scorziello R. (1992) Il Pleistocene superiore marino di Ischia: paleoecologia e rapporti con l’evoluzione tettonica recente. Stud. Geol. Camerti 1, 231– 243. Berner E. K. and Berner R. A. (1996) Global Environment: Water, Air, and Geochemical Cycles. Prentice Hall, Upper Saddle River, 376p. Brocchini F., Principe C., Castradori D., Laurenzi M. A. and Goria L. (2001) Quaternary evolution of the southern sector of the Campanian Plain and early Somma–Vesuvius activity: insights from the Trecase well. Mineral. Petrol. 73, 67–91. Brown R. J., Orsi G. and de Vita S. (2008) New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). B. Volcanol. 70, 583–603. Browne P. R. L. (1978) Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth Planet. Sci. 6, 229–250. Browne P. R. L. and Ellis A. (1970) The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related geochemistry. Am. J. Sci. 269, 97–131. Calcaterra D., Cappelletti P., Langella A., Colella A. and de Gennaro M. (2004) The ornamental stones of Caserta province: the Campanian Ignimbrite in the medieval architecture of Casertavecchia. J. Cult. Herit. 5, 137–148. Caliro S., Panichi C. and Stanzione D. (1999) Variation in the total dissolved carbon isotope composition of thermal waters of the Island of Ischia (Italy) and its implications for volcanic surveillance. J. Volcanol. Geotherm. Res. 90, 219–240. Caprarelli G., Tsutsumi M. and Turi B. (1997) Chemical and isotopic signatures of the basement rocks from the Campi Flegrei geothermal field, Naples, southern Italy: inferences about the origin and evolution of its hydrothermal fluids. J. Volcanol. Geotherm. Res. 76, 63–82. Carapezza M., Hauser S., Parello F., Scelsi E., Valenza M., Favara R. and Guerrieri S. (1988) Preliminary studies on the geothermal fluids of the island of Ischia: gas geochemistry. Rend. Soc. Ital. Mineral. Petrol. 43, 967–974. Carbonin S., Dal Negro A., Molin G. M., Munno R., Rossi G., Lirer L. and Piccirillo E. M. (1984) Crystal chemistry of Ca-rich pyroxenes from undersaturated to oversaturated trachytic rocks, and their relationships with pyroxenes from basalts. Lithos 17, 191–202. Celico P., Stanzione D., Esposito L., Formica F., Piscopo V. and De Rosa B. (1999) La complessita` idrogeologica di un’area vulcanica attiva: l’Isola di Ischia (Napoli-Campania). Boll. Soc. Geol. Ital. 118, 485–504. Chen Y. and Brantley S. L. (1998) Diopside and anthophyllite dissolution at 25 C and 90 C and acid pH. Chem. Geol. 147, 233–248. Chiodini G. and Marini L. (1988) Hydrothermal gas equilibria: The H2O–H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Chiodini G., Avino R., Brombach T., Caliro S., Cardellini C., De Vita S., Frondini F., Granieri D., Marotta E. and Ventura G. (2004) Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 133, 291– 309. Civetta L., Gallo G. and Orsi G. (1991) Sr and Nd isotope and trace element constraints on the chemical evolution of the magmatic system of Ischia Italy in the last 55 ka. J. Volcanol. Geotherm. Res. 46, 213–230. Colella A., Calcaterra D., Cappelletti P., Langella A., Papa L. and de Gennaro M. (2009) I tufi zeolitizzati nell’architettura della Campania. In La diagnostica per il restauro del patrimonio culturale (ed. Cuzzolin). Atti del Convegno Diacomast 2008, pp. 327–341. Creasey S. C. (1966) Hydrothermal alteration. In Geology of the porphyry copper deposits (ed. Titley S. R. and Hicks C. L.). Arizona Univ. Press. pp. 51–74. D’Antonio M. and Kristensen M. B. (2005) Hydrothermal alteration of oceanic crust in the West Philippine Sea Basin (Ocean Drilling Program Leg 195, Site 1201): inferences from a mineral chemistry investigation. Mineral. Petrol. 83, 87–112. D’Antonio M., Tonarini S., Arienzo I., Civetta L. and Di Renzo V. (2007) Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In Cenozoic volcanism in the mediterranean area (eds. L. Beccaluva, G. Bianchini and M. Wilson). Geol. Soc. Am. Sp. Pap. 418. pp. 203– 220. De Gennaro M., Ferreri M., Ghiara M. R. and Stanzione D. (1984) Geochemistry of thermal waters on the island of Ischia (Campania, Italy). Geothermics 13, 361–374. De Vivo B., Belkin H. E., Barbieri M., Chelini W., Lattanzi P., Lima A. and Tolomeo L. (1989) The Campi Flegrei, Italy, geothermal system: a fluid inclusion study of the Mofete and S. Vito Fields. J. Volcanol. Geotherm. Res. 36, 303–326. Deer W. A., Howie R. A. and Zussman J. (1992) An Introduction to the Rock-forming Minerals, 2nd ed. Longman Scientific & Technical, Harlow, 696 p. Deer W. A., Howie R. A. and Zussman J. (1997) Rock-forming Minerals. 1B: Disilicates and Ring Silicates, 2nd ed. Geological Society, London, 764p. Di Napoli R., Aiuppa A., Bellomo S., Brusca L., D’Alessandro W., Gagliano Candela E., Longo M., Pecoraino G. and Valenza M. (2009) A model for Ischia hydrothermal system: evidences from the chemistry of thermal groundwaters. J. Volcanol. Geotherm. Res. 186, 133–159. R. Di Napoli et al. / Geochimica et Cosmochimica Acta 105 (2013) 108–129 127 Di Napoli R., Martorana R., Orsi G., Aiuppa A., CamardaM., De Gregorio S., Gagliano Candela E., Luzio D., Messina N., Pecoraino G., Bitetto M., de Vita S. and Valenza M. (2011) The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: the Ischia Island case study. Geochem. Geophys. Geosyst. 12, 1–25. Drever J. I. (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice Hall, New Jersey, 437p. Ellis A. J. (1971) Magnesium ion concentration in the presence of magnesium chlorite, calcite, carbon dioxide, quartz. Am. J. Sci. 271, 481–489. Ellis A. J. and Wilson S. H. (1960) The geochemistry of alkali metal ions in the Wairakei hydrothermal system. NZ J. Geol. Geophys. 3, 593–617. Ellis A. J. and Mahon W. A. J. (1964) Natural hydrothermal systems and experimental hot-water/rock interactions. Geochim. Cosmochim. Acta 28, 1323–1357. Federico C., Pizzino L., Cinti D., De Gregorio S., Favara R., Galli G., Giudice G., Gurrieri S., Quattrocchi F. and Voltattorni N. (2008) Inverse and forward modelling of groundwater circulation in a seismically active area (Monferrato, Piedmont, NW Italy): Insights into stress-induced variations in water chemistry. Chem. Geol. 248, 14–39. Fowler S. J., Spera F. J., Bohrson W. A., Belkin H. E. and De Vivo B. (2007) Phase equilibria constraints on the chemical and physical evolution of the campanian ignimbrite. J. Petrol. 48, 459–493. Fulignati P., Malfitano G. and Sbrana A. (1997) The Pantelleria caldera geothermal system: data from the hydrothermal minerals. J. Volcanol. Geotherm. Res. 75, 251–270. Fulignati P., Gioncada A. and Sbrana A. (1998) Geologic model of the magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). Mineral. Petrol. 62, 195–222. Gambardella B., Marini L. and Baneschi I. (2005) Dissolved potassium in the shallow groundwaters circulating in the volcanic rocks of central-southern Italy. Appl. Geochem. 20, 875–897. Gianelli G. and Grassi S. (2001) Water–rock interaction in the active geothermal system of Pantelleria, Italy. Chem. Geol. 181, 113–130. Giggenbach W. F. (1984) Mass transfer in hydrothermal alteration systems – a conceptual approach. Geochim. Cosmochim. Acta 48, 2693–2711. Giggenbach W. F. (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765. Gislason S. R. and Eugster H. P. (1987) Meteoric water–basalt interactions. I: A laboratory study. Geochim. Cosmochim. Acta 51, 2827–2840. Gysi A. P. and Stefa´nsson A. (2011) CO2–water–basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts. Geochim. Cosmochim. Acta 75, 4728–4751. Gysi A. P. and Stefa´nsson A. (2012) Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration. Chem. Geol. 306–307, 10–28. Hedenquist J. W. and Lowenstern J. B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527. Helgeson H. C. (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions: I. Thermodynamic relations. Geochim. Cosmochim. Acta 32, 853–877. Helgeson H. C. (1979) Mass transfer among minerals and hydrothermal solutions. In Geochemistry of Hydrothermal Ore Deposits (ed. H. L. Barnes). John Wiley and Sons, New York, pp. 568–610. Helgeson H. C., Garrels R. M. and Mackenzie F. T. (1969) Evaluation of irreversible reactions in geochemical processes involving minerals aqueous solutions: II. Applications. Geochim. Cosmochim. Acta 33, 455–481. Helgeson H. C., Brown T. H., Nigrini A. and Jones T. A. (1970) Calculation of mass transfer in geochemical processes involving minerals and aqueous solutions. Geochim. Cosmochim. Acta 34, 569–592. Hurwitz S., Evans W. C., Lowenstern J. B., Bergfeld D., Werner C., Heasler H., and Jaworowski C. (2007) Extensive hydrothermal rock alteration in a low pH, steam-heated environment: Hot Springs Basin, Yellowstone National Park. In Proceedings of the 12th International Symposium on Water–Rock, Interaction. pp. 81–85. Krauskopf K. B. and Bird D. K. (1995) Introduction to Geochemistry. McGraw-Hill, New York, 647p. Inguaggiato S., Pecoraino G. and D’Amore F. (2000) Chemical and isotopic characterization of fluid manifestations of Ischia Island. J. Volcanol. Geotherm. Res. 99, 151–178. Ippolito F. (1942) Su alcuni pozzi profondi del napoletano. Boll. Soc. Nat. Napoli 53, 134–140. Langmuir D. (1997) Aqueous Environmental Geochemistry. Prentice- Hall, Upper Saddle River, New Jersey, 600 p. Lelli M., Cioni R. and Marini L. (2008) The double solid reactant method: II. An application to the shallow groundwaters of the Porto Plain, Vulcano Island (Italy). Environ. Geol. 56, 139–158. http://dx.doi.org/10.1007/s00254-007-1147-2. Lonker S. W., Franzson H. and Kristmannsdo´ ttir H. (1993) Mineral–fluid interactions in the Reykjanes and Svartsengi geothermal systems, Iceland. Am. J. Sci. 293, 605–670. Lowell J. D. and Guilbert J. M. (1970) Lateral and vertical alteration–mineralization zoning in porphyry ore deposits. Econ. Geol. 65, 373–408. Marku´sson S. H. and Stefa´nsson A. (2011) Geothermal surface alteration of basalts, Kry´suvı´k Iceland-Alteration mineralogy, water chemistry and the effects of acid supply on the alteration process. J. Volcanol. Geotherm. Res. 206, 46–59. McDowell S. D. and Elders W. A. (1980) Authigenic layer silicated minerals in borehole Elmore I, Salton Sea Geothermal field, California, USA. Contrib. Mineral. Petrol. 74, 293–310. Meyer C. and Hemley J. J. (1967) Wallrock alteration. In Geochemistry of Hydrothermal ore Deposits (ed. H. L. Barnes). Rinehart and Wilson Publ., pp. 166–235. Morell I., Pulido-Bosch A., Daniele L. and Virgilio Cruz J. (2008) Chemical and isotopic assessment in volcanic thermal waters: cases of Ischia (Italy) and Sa˜o Miguel (Azores, Portugal). Hydrol. Process. 22, 4386–4399. Moretti R., Arienzo I., Orsi G., Civetta L. and D’Antonio M. (2011) The deep plumbing system of the Ischia island: a physico-chemical window on the fluid-saturated and CO2- sustained Neapolitan volcanism (Southern Italy). Mineral. Mag. 75, 1499. Muffler L. J. and White D. E. (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeastern California. Bull. Geol. Soc. Am. 80, 157–180. Naboko S. I. (1970) Facies of hydrothermally altered rocks of Kamchatka–Kurile volcanic arc. Pac. Geol. 2, 23–27. Orsi G., Gallo G. and Zanchi A. (1991) Simple-shearing block resurgence in caldera depression. A model from Pantelleria and Ischia. J. Volcanol. Geotherm. Res. 47, 1–11. Orsi G., Piochi M., Campajola L., D’Onofrio A., Gialanella L. and Terrasi F. (1996) 14C geochronological constraints for the 128 R. Di Napoli et al. / Geochimica et Cosmochimica Acta 105 (2013) 108–129 volcanic history of the island of Ischia (Italy) over the last 5000 years. J. Volcanol. Geotherm. Res. 71, 249–257. Orsi G., de Vita S., Di Vito M., Isaia R., Nave R. and Heiken G. (2003) Facing volcanic and related hazards in the Neapolitan area. In Earth Sciences in Cities (eds. G. Heiken, R. Fakundiny and J. Sutter). American Geophysical Union (Special Publication), Washington. pp. 121–170. Palandri J. L. and Kharaka Y. K. (2004) A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. US Geol. Surv. Open File Rep. 2004– 1068. Panichi C., Bolognesi L., Ghiara M. R., Noto P. and Stanzione D. (1992) Geothermal assessment of the island of Ischia (southern Italy) from isotopic and chemical composition of the delivered fluids. J. Volcanol. Geotherm. Res. 49, 329–348. Penta F. (1949) Temperature nel sottosuolo della regione Flegrea. Ann. Geophys. 2, 327–346. Penta F. (1954) Ricerche e studi sui fenomeni esalativo-idrotermali e il problema delle “forze endogene”. Ann. Geophys. 8, 317–408. Penta F. and Conforto B. (1951a) Sulle misure di temperatura del sottosuolo nei fori trivellati in presenza di acqua e sui relativi rilievi freatimetrici in regioni idrotermali. Ann. Geophys. 4, 41– 93. Penta F. and Conforto B. (1951b) Risultati di sondaggi e di ricerche geominerarie nell’Isola di Ischia dal 1939 al 1943, nel campo del vapore, delle acque termali e delle “forze endogene” in generale. Ann. Geophys. 4, 159–191. Que M. and Allen A. R. (1996) Sericitization of Plagioclase in the Rosses Granite Complex, Co. Donegal, Ireland. Mineral. Mag. 60, 927–936. Ragnarsdo` ttir K. V. (1993) Dissolution kinetics of heulandite at pH 2–12 and 25 C. Geochim. Cosmochim. Acta 57, 2439–2449. Reed M. H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528. Rock N. M. S. (1990) The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: computerization and its consequences. Mineral. Petrol. 43, 99–119. Rose A. N. (1970) Zonal relations of wall rock alteration and sulfide distribution of porphyry copper deposits. Econ. Geol. 65, 920–936. Sbrana A., Fulignati P., Marianelli P., Boyce A. J. and Cecchetti A. (2009) Exhumation of an active magmatic hydrothermal system in a resurgent caldera environment. The example of Ischia Island (Italy). J. Geol. Soc. London 166, 1061–1073. Sbrana A., Fulignati P. and Marianelli P. (2010) Development and fast exhumation of a geothermal system in a resurgent caldera environment. The example of Ischia Island (Italy). In Proceedings World Geothermal Congress. pp 1–5. Stefa´nsson A. (2010) Low-temperature alteration of basalts – the effects of temperature, acids and extent of reaction on mineralization and water chemistry. Jokull 60, 165–184. Stefa´nsson A., Arno´rsson S., Gunnarsson I., Kaasalainen H. and Gunnlaugsson E. (2011) The geochemistry and sequestration of H2S into the geothermal system at Hellisheidi, Iceland. J. Volcanol. Geotherm. Res. 202, 179–188. Steinmann P., Lichtner P. C. and Shotyk W. (1994) Reaction path approach to mineral weathering reactions. Clays Clay Miner. 42, 197–206. Stormer, Jr., J. C. (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron–titanium oxides. Am. Mineral. 68, 586–594. Stumm W. and Morgan J. J. (1996) Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley & Sons, Inc., New York, 1022p. Symonds R. B., Gerlac T. M. and Reed M. H. (2001) Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geotherm. Res. 108, 303–341. Tedesco D. (1996) Chemical and isotopic investigations of fumarolic gases from Ischia island southern Italy: evidences of magmatic and crustal contribution. J. Volcanol. Geotherm. Res. 74, 233–242. Tempel R. N., Sturmer D. M. and Schilling J. (2011) Geochemical modeling of the near-surface hydrothermal system beneath the southern moat of Long Valley Caldera, California. Geothermics 40, 91–101. Vezzoli L. (1988) Island of Ischia. In Quaderni de La Ricerca Scientifica, vol. 114. C.N.R., Rome. 133p. White D. E. (1957) Magmatic, connate, and metamorphic waters. Geol. Soc. Am. Bull. 69, 1659–1682. Wolery T. J. and Daveler S. A. (1992) EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide and related documentation (version 7.0). Report UCRl-MA-110662 PT IV. Lawrence Livermore National Laboratory, Livermore, California. Yavuz F. (2001) PYROX: a computer program for the IMA pyroxene classification and calculation scheme. Comput. Geosci. 27, 97–107. Yavuz F. (2003) Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA+. Comput. Geosci. 29, 1203–1213.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0016-7037en
dc.relation.eissn1872-9533en
dc.contributor.authorDi Napoli, R.en
dc.contributor.authorFederico, C.en
dc.contributor.authorAiuppa, A.en
dc.contributor.authorD'Antonio, M.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentDipartimento DiSTeM, Università degli Studi di Palermoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento DiSTeM, Università degli Studi di Palermo- INGV-PAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento DiSTeM, Università degli Studi di Palermo; INGV-PAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0002-6175-3124-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Di Napoli et al. 2013.pdfMain article2.36 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 20

377
checked on Apr 17, 2024

Download(s) 50

67
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric