Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8781
DC FieldValueLanguage
dc.contributor.authorallRoberts, A. P.; Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.en
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBohaty, S. M.; National Oceanography Centre, University of Southampton, Southampton, UK.en
dc.contributor.authorallVerosub, K. L.; Department of Geology, University of California, Davis, California, USA.en
dc.contributor.authorallWilson, G. S.; Department of Marine Science, University of Otago, Dunedin, New Zealand.en
dc.contributor.authorallZachos, J. C.; Department of Earth and Planetary Sciences, University of California, Santa Cruz, California, USA.en
dc.date.accessioned2013-10-22T10:44:10Zen
dc.date.available2013-10-22T10:44:10Zen
dc.date.issued2013-05-06en
dc.identifier.urihttp://hdl.handle.net/2122/8781en
dc.description.abstractWe synthesize environmental magnetic results for sediments from the Victoria Land Basin (VLB), which span a total stratigraphic thickness of 2.6 km and a ~17 Myr age range. We assess how magnetic properties record paleoclimatic, tectonic, and provenance variations or mixtures of signals resulting from these processes. The magnetic properties are dominated by large-scale magnetite concentration variations. In the late Eocene and early Oligocene, magnetite concentration variations coincide with detrital smectite concentration and crystallinity variations, which reflect paleoclimatic control on magnetic properties through influence on weathering regime; high magnetite and smectite concentrations indicate warmer and wetter climates and vice versa. During the early Oligocene, accelerated uplift of the Transantarctic Mountains gave rise to magnetic signatures that reflect progressive erosion of the Precambrian-Mesozoic metamorphic, intrusive, and sedimentary stratigraphic cover succession associated with unroofing of the adjacent Transantarctic Mountains. From the early Oligocene to the early Miocene, a consistent fining upward of magnetite particles through the recovered composite record likely reflects increased physical weathering with glacial grinding contributing to progressively finer grained Ferrar Dolerite-sourced magnetite. After 24 Ma, the magnetic properties of VLB sediments are primarily controlled by the weathering and erosion of McMurdo Volcanic Group rocks; increased volcanic glass contents contribute to the fining upward of magnetite grain size. Overall, long-term magnetic property variations record the first-order geological processes that controlled sedimentation in the VLB, including paleoclimatic, tectonic, provenance, and volcanic influences.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/ 118 (2013)en
dc.subjectenvironmental magnetismen
dc.subjectAntarcticaen
dc.subjectpaleoclimateen
dc.subjectvolcanismen
dc.subjectRoss Seaen
dc.subjectCenozoicen
dc.titleEnvironmental magnetic record of paleoclimate, unroofing of the Transantarctic Mountains, and volcanism in late Eocene to early Miocene glaci-marine sediments from the Victoria Land Basin, Ross Sea, Antarcticaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1845–1861en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1002/jgrb.50151en
dc.relation.referencesBanerjee, S. K., J. King, and J. Marvin (1981), A rapid method for magnetic granulometry with applications to environmental studies, Geophys. Res. Lett., 4, 333–336. Barrett, P. J. (1981), History of the Ross Sea region during the deposition of the Beacon Supergroup 400–180million years ago, J. R. Soc. N. Z., 11, 447–458. Barrett, P. J. (Ed) (1986), Antarctic Cenozoic History from the MSSTS-1 Drillhole, McMurdo Sound, Antarctica, Dept. Sci. Ind. Res. Bull., 237 DSIR Publishing, Wellington, N.Z, 174 pp. Barrett, P. J. (Ed) (1989), Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, Antarctica, Dept. Sci. Ind. Res. Bull., 245 DSIR Publishing, Wellington, N.Z, 254 pp. Barrett, P. J., and B. C. McKelvey (1981), Permian tillites of South Victoria Land, Antarctica, in Earth’s Pre-Pleistocene Glacial Record, edited by M. J. Hambrey, andW. B. Harland, pp. 233–236, Cambridge University Press. Barrett, P. J., G. W. Grindley, and P. N. Webb (1972), The Beacon Supergroup of East Antarctica, in Antarctic Geology and Geophysics, edited by R. J. Adie, pp. 319–322, Universitetsforlaget, Oslo. Barrett, P. J., S. A. Henrys, L. R. Bartek, G. Brancolini, M. Busetti, F. J. Davey, M. J. Hannah, and A. R. Pyne (1995), Geology off the margin of the Victoria Land Basin, Southwest Ross Sea, in Geology and Seismic Stratigraphy of the Antarctic Margin, edited by A. K. Cooper, P. F. Barker, and G. Brancolini, Am. Geophys. Un., Ant. Res. Ser., 68, pp. 183–207. Behrendt, J. C., W. E. LeMasurier, A. K. Cooper, F. Tessensohn, A. Tréhu, and D. Damaske (1991), Geophysical studies of the West Antarctic rift system, Tectonics, 10, 1257–1273. Brachfeld, S. A., S. K. Banerjee, Y. Guyodo, and G. D. Acton (2002), A 13200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula, Earth Planet. Sci. Lett., 194, 311–326. Bücker, C. J., R. D. Jarrard, F. Niessen, and T. Wonik (2001), Statistical analysis of wireline logging data of the CRP-3 drillhole (Victoria Land Basin, Antarctica), Terra Ant., 8, 491–505. Campbell, I. B., and G. G. C. Claridge (1987), Antarctica: Soils, weathering processes and environment, in Developments in Soil Science, vol. 16, p. 368, Elsevier, Amsterdam, The Netherlands. Cande, S. C., and D. V. Kent (1995), Revised calibration of the geomagnetic polarity time scale for the late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095. Cande, S. C., J. M. Stock, R. D. Müller, and T. Ishihara (2000), Cenozoic motion between East and West Antarctica, Nature, 404, 145–150. Canfield, D. E., and R. A. Berner (1987), Dissolution and pyritization of magnetite in anoxic marine sediments, Geochim. Cosmochim. Acta, 51, 645–659. Channell, J. E. T., and T. Hawthorne (1990), Progressive dissolution of titanomagnetites at ODP site 653 (Tyrrhenian Sea), Earth Planet. Sci. Lett., 96, 469–480. Cooper, A. K., F. J. Davey, and J. C. Behrendt (1987), Seismic stratigraphy and structure of the Victoria Land Basin, Western Ross Sea, Antarctica, in The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea, edited by A.K. Cooper, and F. J.Davey, Earth Science Series, vol. 5B, pp. 27–76, Circum-Pacific Research Council, Houston, Texas. Coxall, H. K., P. A. Wilson, H. Pälike, C. H. Lear, and J. Backman (2005), Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53–57. Davey, F. J., D. J. Bennett, and R. E. Hout (1982), Sedimentary basins of the Ross Sea, Antarctica, N. Z. J. Geol. Geophys., 25, 245–255. Davey, F. J., K. Hinz, and H. Schroeder (1983), Sedimentary basins of the Ross Sea, Antarctica, in Antarctic Earth Science, edited by R. L. Oliver, P. R. James, and J. B. Jago, pp. 533–588, Australian Academy of Science, Canberra. Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain size and composition dependence, Phys. Earth Planet. Inter., 13, 305–314. Deng, C., R. X. Zhu, M. J. Jackson, K. L. Verosub, and M. J. Singer (2001), Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator, Phys. Chem. Earth, 26, 873–878. Diester-Haass, L. (1996), Late Eocene-Oligocene paleoceanography in the southern Indian Ocean (ODP Site 744), Mar. Geol., 130, 99–119. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. Ehrmann, W. (1998), Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics, Palaeogeogr. Palaeoclimatol. Palaeoecol., 139, 213–231. Ehrmann, W. (2000), Variations in smectite content and crystallinity in sediments from CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 575–580. Ehrmann, W. (2001), Smectite content and crystallinity in sediments from CRP-3, Victoria Land Basin, Antarctica, Terra Ant., 8, 533–542. Ehrmann, W. U., and A. Mackensen (1992), Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time, Palaeogeogr. Palaeoclimatol. Palaeoecol., 93, 85–112. Ehrmann, W., M. Setti, and L. Marinoni (2005), Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history, Palaeogeogr. Palaeoclimatol. Palaeoecol., 229, 187–211. Elliot, D. H., and T. H. Fleming (2000), Weddell triple junction: The principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana, Geology, 28, 539–542. Elliot, D. H., T. H. Fleming, P. R. Kyle, and K. A. Foland (1999), Long-distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica, Earth Planet. Sci. Lett., 167, 89–104. Encarnación, J., T. H. Fleming, D. H. Elliot, and H. V. Eales (1996), Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana, Geology, 24, 535–538. Evans, M. E., and F. Heller (2003), Environmental Magnetism: Principles and Applications of Enviromagnetics, p. 299, Academic Press, San Diego, Calif. Fielding, C. R., T. R. Naish, K. J. Woolfe, and M. A. Lavelle (2000), Facies analysis and sequence stratigraphy of CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 323–338. Fielding, C. R., J. Whittaker, S. A. Henrys, T. J. Wilson, and T. R. Naish (2008), Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history, Paleogeogr. Palaeoclimatol. Palaeoecol., 260, 8–29. Fitzgerald, P. G. (1992), The Transantarctic Mountains of southern Victoria Land: The application of apatite fission track analysis to a rift shoulder uplift, Tectonics, 11, 634–662. Fitzgerald, P. G., M. Sandiford, P. J. Barrett, and A. J. W. Gleadow (1986), Asymmetric extension associated with uplift and subsidence in the Transantarctic Mountains and Ross embayment, Earth Planet. Sci. Lett., 81, 67–78. Florindo, F., G. S. Wilson, A. P. Roberts, L. Sagnotti, and K. L. Verosub (2001), Magnetostratigraphy of late Eocene-early Oligocene glaciomarine sediments from the CRP-3 Core, McMurdo Sound, Ross Sea, Antarctica, Terra Ant., 8, 599–613. Florindo, F., G. S. Wilson, A. P. Roberts, L. Sagnotti, and K. L. Verosub (2005), Magnetostratigraphic chronology of a Late Eocene to Early Miocene glacimarine succession from the Victoria Land Basin, Ross Sea, Antarctica, Global Planet. Change, 45, 207–236. Galeotti, S., L. Lanci, F. Florindo, T. R. Naish, L. Sagnotti, S. Sandroni, and F. M. Talarico (2012), Cyclochronology of the Eocene-Oligocene transition from the Cape Roberts Project-3 core, Victoria Land basin, Antarctica, Paleogeogr. Palaeoclimatol. Palaeoecol., 335, 84–94. Glasby, G. P., J. G. McPherson, B. P. Kohn, J. H. Johnston, J. R. Keys, A. G. Freeman, and M. J. Tricker (1981), Desert varnish in southern Victoria Land, Antarctica, N. Z. J. Geol. Geophys., 24, 389–397. Grapes, R. H., D. L. Reid, and J. G. McPherson (1974), Shallow dolerite intrusion and phreatic eruption in the Allan Hills region, Antarctica, N. Z. J. Geol. Geophys., 17, 563–577. Grindley, G. W. (1963), The geology of the Queen Alexandra Range, Beardmore Glacier, Ross Dependency, Antarctica, with notes on the correlation of Gondwana sequences, N. Z. J. Geol. Geophys., 6, 307–347. Grindley, G.W., and G.Warren (1964), Stratigraphic nomenclature and correlation in the western Ross Sea region, in Antarctic Geology, edited byR. J. Adie, pp. 314–333, North Holland Publishing, Amsterdam, The Netherlands. Gunn, B. M., and G. Warren (1962), Geology of Victoria Land between Mawson and Mullock Glaciers, Antarctica, N. Z. Geol. Surv. Bull., 71. Hamilton, R. J., B. P. Luyendyk, C. C. Sorlien, and L. A. Bartek (2001), Cenozoic tectonics of the Cape Roberts Rift Basin and Transantarctic Mountain Front, southwestern Ross Sea, Antarctica, Tectonics, 20, 325–342. Hannah, M. J. (1997), Climate controlled dinoflagellate distribution in Late Eocene–Earliest Oligocene strata from CIROS-1 drillhole, McMurdo Sound, Antarctica, Terra Ant., 4, 73–78. Hannah, M. J., M. B. Cita, R. Coccioni, and S. Monechi (1997), The Eocene/Oligocene boundary at 70 S, McMurdo Sound, Antarctica, Terra Ant., 4, 79–87. Hannah, M. J., J. H. Wrenn, and G. J. Wilson (2001), Preliminary report on Early Oligocene and ?Latest Eocene marine palynomorphs from CRP-3 drillhole, Victoria Land Basin, Antarctica, Terra Ant., 8, 383–388. Harrington, H. J. (1958), Nomenclature of rock units in the Ross Sea region, Antarctica, Nature, 182, 290. Harwood, D. M. (1986), Diatoms, in Antarctic Cenozoic History from the MSSTS-1 Drillhole, McMurdo Sound, Antarctica, edited by P. J. Barrett, Dept Sci. Ind. Res. Bull., 237, pp. 69–107, DSIR Publishing, Wellington, N.Z. Harwood, D. M. (1989), Siliceous microfossils, in Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, Antarctica, edited by P. J. Barrett, Dept Sci. Ind. Res. Bull., 245, 67–97, DSIR Publishing, Wellington, N.Z. Harwood, D. M., and S. M. Bohaty (2001), Early Oligocene siliceous microfossil biostratigraphy of Cape Roberts Project core CRP-3, Victoria Land Basin, Antarctica, Terra Ant., 8, 315–338. Harwood, D. M., S. M. Bohaty, and R. P. Scherer (1998), Lower Miocene diatom biostratigraphy of the CRP-1 drillcore, McMurdo Sound, Antarctica, Terra Ant., 5, 499–514. Heimann, A., T. H. Fleming, D. H. Elliot, and K. A. Foland (1994), A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology, Earth Planet. Sci. Lett., 121, 19–41. Henrys, S. A., C. J. Bücker, F. Niessen, and L. R. Bartek (2001), Correlation of seismic reflectors with the CRP-3 drillhole, Victoria Land Basin, Antarctica, Terra Ant., 8, 127–136. Hill, R. S. (1989), Fossil leaf, in Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, Antarctica, edited by P. J. Barrett, Dept Sci. Ind. Res. Bull., 245, pp. 143–144, DSIR Publishing, Wellington, N.Z. Horng, C. S., and A. P. Roberts (2006), Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum, Earth Planet. Sci. Lett., 241, 750–762. Horng, C. S., C. A. Huh, K. H. Chen, C. H. Lin, K. S. Shea, and K. H. Hsiung (2012), Pyrrhotite as a tracer for denudation of the Taiwan orogen, Geochem. Geophys. Geosyst., 13, Q08Z47, doi:10.1029/2012GC004195. Kanfoush, S. L., D. A. Hodell, C. D. Charles, T. R. Janecek, and F. R. Rack (2002), Comparison of ice-rafted debris and physical properties in ODP Site 1094 (South Atlantic) with the Vostok ice core over the last four climatic cycles, Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 329–349. Kao, S. J., C. S. Horng, A. P. Roberts, and K. K. Liu (2004), Carbon-sulfuriron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation, Chem. Geol., 203, 153–168. Karlin, R. (1990a), Magnetite diagenesis in marine sediments from the Oregon continental margin, J. Geophys. Res., 95, 4405–4419. Karlin, R. (1990b), Magnetic mineral diagenesis in suboxic sediments at Bettis Site W-N, NE Pacific Ocean, J. Geophys. Res., 95, 4421–4436. Karlin, R., and S. Levi (1983), Diagenesis of magnetic minerals in recent haemipelagic sediments, Nature, 303, 327–330. Karlin, R., and S. Levi (1985), Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments, J. Geophys. Res., 90, 10,373–10,392. Kelly, W. C., and J. H. Zumberge (1961), Weathering of a quartz diorite at Marble Point, McMurdo Sound, Antarctica, J. Geol., 69, 433–446. King, J. W., S. K. Banerjee, and J.Marvin (1983), A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years, J. Geophys. Res., 88, 5911–5921. Korsch, R. J. (1974), Petrographic comparison of the Taylor and Victoria Groups (Devonian to Triassic) in South Victoria Land, Antarctica, N. Z. J. Geol. Geophys., 17, 523–541. Kyle, P. R. (1990), McMurdo Volcanic Group-Western Ross Embayment: Introduction, Am. Geophys. Un. Ant. Res. Ser., 48, 19–25. Lavelle, M. (1998), Strontium-isotope stratigraphy of the CRP-1 drill-hole, Ross Sea, Antarctica, Terra Ant., 5, 691–696. Lavelle, M. (2000), Strontium-isotope stratigraphy and age model for CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 611–620. Lavelle, M. (2001), Strontium-isotope stratigraphy for CRP-3, Victoria Land Basin, Antarctica, Terra Ant., 8, 593–598. Leeder, M. (2011), Sedimentology and Sedimentary Basins: From Turbulence to Tectonics, 2nd ed., p. 592, Wiley-Blackwell, Chichester, U.K. Leslie, B. W., S. P. Lund, and D. E. Hammond (1990), Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic sediments of the California continental borderland, J. Geophys. Res., 95, 4437–4452. Liu, Q. S., C. L. Deng, Y. J. Yu, J. Torrent, M. J. Jackson, S. K. Banerjee, and R. X. Zhu (2005), Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/paleosols, Geophys. J. Int., 161, 102–112. Liu, Q. S., A. P. Roberts, J. C. Larrasoaña, S. K. Banerjee, Y. Guyodo, L. Tauxe, and F.Oldfield (2012), Environmentalmagnetism: Principles and applications, Rev. Geophys., RG4002, doi:10.1029/2012RG000393. Lowrie,W. (1990), Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162. Maher, B. A., and R. Thompson (Eds) (1999), Quaternary Climates, Environments and Magnetism, p. 402, Cambridge Univ. Press, New York. Marchant, D. R., C. C. Swisher, D. R. Lux, D. P. West, and G. H. Denton (1993), Pliocene paleoclimate and East Antarctic ice-sheet history from surficial ash deposits, Science, 260, 667–670. McArthur, J. M., R. J. Howarth, and T. R. Bailey (2001), Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 109, 155–170. McIntosh, W. C. (2000), 40Ar/39Ar geochronology of tephra and volcanic clasts in CRP-2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 621–630. McKelvey, B. C., P.-N. Webb, M. P. Gorton, and B. P. Kohn (1970), Stratigraphy of the Beacon Supergroup between the Olympus and Boomerang Ranges, Victoria Land, Antarctica, Nature, 227, 1126–1128. Mildenhall, D. C. (1989), Terrestrial palynology, in Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, Antarctica, edited by P. J. Barrett, Dept Sci. Ind. Res. Bull., 245, pp. 119–127, DSIR Publishing, Wellington, N.Z. Miller, K. G., R. G. Fairbanks, and G. S. Mountain (1987), Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 1–19. Naish, T. R. et al. (2001), Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary, Nature, 413, 719–723. Olney, M. P., R. P. Scherer, D. M. Harwood, and S. M. Bohaty (2007), Oligocene-early Miocene Antarctic nearshore diatom biostratigraphy, Deep-Sea Res., II, 54, 2325–2349. Pirrung, M., C. D. Hillenbrand, B. Diekmann, D. Fütterer, H. Grobe, and G. Kuhn (2002), Magnetic susceptibility and ice-rafted debris in surface sediments of the Atlantic sector of the Southern Ocean, Geo. Mar. Lett., 22, 170–180. Pross, J. et al. (2012), Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch, Nature, 488, 73–77. Prothero, D. R. (1994), The Eocene–Oligocene extinctions, Annu. Rev. Earth Planet. Sci., 22, 145–165. Raine, J. I. (1998), Terrestrial palynomorphs from Cape Roberts Project drillhole CRP-1, Ross Sea, Antarctica, Terra Ant., 5, 539–548. Raine, J. I., and R. A. Askin (2001), Terrestrial palynology of Cape Roberts Project drillhole CRP-3, Victoria Land Basin, Antarctica, Terra Ant., 8, 389–400. Robert, C., and J. P. Kennett (1997), Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: Clay mineral and oxygen isotope evidence, Geology, 25, 587–590. Robert, C., L. Diester-Haass, and H. Chamley (2002), Late Eocene-Oligocene oceanographic development at southern high latitudes, from terrigenous and biogenic particles: A comparison ofKerguelen Plateau andMaud Rise,ODP Sites 744 and 689, Mar. Geol., 191, 37–54. Roberts, A. P., and R. Weaver (2005), Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 231, 263–277. Roberts, A. P., Y. L. Cui, and K. L. Verosub (1995),Wasp-waisted hysteresis loops: Mineralmagnetic characteristics and discrimination of components in mixed magnetic systems, J. Geophys. Res., 100, 17,909–17,924. Roberts, A. P., G. S. Wilson, F. Florindo, L. Sagnotti, K. L. Verosub, and D. M. Harwood (1998), Magnetostratigraphy of lower Miocene strata from the CRP-1 core, McMurdo Sound, Ross Sea, Antarctica, Terra Ant., 5, 703–713. Roberts, A. P., G. S. Wilson, D. M. Harwood, and K. L. Verosub (2003a), Glaciation across the Oligocene-Miocene boundary in southern McMurdo Sound, Antarctica: New chronology from the CIROS-1 drill hole, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 113–130. Roberts, A. P., S. Bicknell, J. Byatt, S. M. Bohaty, F. Florindo, and D. M. Harwood (2003b), Magnetostratigraphic calibration of Southern Ocean diatom biostratigraphic datums from the Eocene-Oligocene of Kerguelen Plateau (ODP sites 744 and 748), Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 145–168. Roberts, A. P., L. Chang, D. Heslop, F. Florindo, and J. C. Larrasoaña (2012), Searching for single domain magnetite in the “pseudo-singledomain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations, J. Geophys. Res., 117, B08104, doi:10.1029/2012JB009412. Rochette, P. (1987), Metamorphic control of the magnetic mineralogy of black shales in the Swiss Alps: Toward the use of “magnetic isogrades”, Earth Planet. Sci. Lett., 84, 446–456. Rowan, C. J., A. P. Roberts, and T. Broadbent (2009), Reductive diagenesis, magnetic dissolution, greigite growth, and paleomagnetic smoothing in marine sediments: A new view, Earth Planet. Sci. Lett., 277, 223–235. Sagnotti, L., F. Florindo, K. L. Verosub, G. S. Wilson, and A. P. Roberts (1998a), Environmental magnetic record of Antarctic palaeoclimate from Eocene-Oligocene glaciomarine sediments, Victoria Land margin, Geophys. J. Int., 134, 653–662. Sagnotti, L., F. Florindo, G. S. Wilson, A. P. Roberts, and K. L. Verosub (1998b), Environmental magnetism of lower Miocene strata from the CRP-1 core, McMurdo Sound, Antarctica, Terra Ant., 5, 661–667. Sagnotti, L., K. L. Verosub, A. P. Roberts, F. Florindo, and G. S. Wilson (2001a), Environmental magnetic record of the Eocene-Oligocene transition in the CRP-3 drillcore, Victoria Land Basin, Antarctica, Terra Ant., 8, 507–516. Sagnotti, L., P. Macrí, A. Camerlenghi, and M. Rebesco (2001b), Environmental magnetism of Antarctic Late Pleistocene sediments and interhemispheric correlation of climatic events, Earth Planet. Sci. Lett., 192, 65–80. Sagnotti, L., A. P. Roberts, R. Weaver, K. L. Verosub, F. Florindo, G. S. Wilson, C. R. Pike, and T. Clayton (2005), Apparent high-frequency magnetic polarity reversals due to alternating remagnetizations resulting from late diagenetic growth of greigite from siderite, Geophys. J. Int., 160, 89–100. Schäfer, J. M., S. Ivy-Ochs, R. Wieler, I. Leya, H. Baur, G. H. Denton, and C. Schlüchter (1999), Cosmogenic noble gas studied in the oldest landscape on earth: Surface exposure ages of the Dry Valleys, Antarctica, Earth Planet. Sci. Lett., 167, 215–226. Scherer, R. P., S. M. Bohaty, and D. M. Harwood (2000), Oligocene and lower Miocene siliceous microfossil biostratigraphy of Cape Roberts Project Core CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 417–442. Smellie, J. L. (2000), Erosional history of the Transantarctic Mountains deduced from sand grain detrital modes in CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 545–552. Smellie, J. L. (2001), History of Oligocene erosion, uplift and unroofing of the Transantarctic Mountains deduced from sandstone detrital modes in CRP-3 drillcore, Victoria Land Basin, Antarctica, Terra Ant., 8, 481–489. Stern, T. A., and U. S. ten Brink (1989), Flexural uplift of the Transantarctic Mountains, J. Geophys. Res., 94, 10,315–10,330. Stump, E. (1995), The Ross Orogen of the Transantarctic Mountains, Cambridge Univ. Press, Cambridge, pp. 284 . Sugden, D. E., G. H. Denton, and D. R. Marchant (1995), Landscape evolution of the Dry Valleys, Transantarctic Mountains: Tectonic implications, J. Geophys. Res., 100, 9949–9967. Sugden, D. E., M. A. Summerfield, G. H. Denton, T. I. Wilch, W. C. McIntosh, D. R. Marchant, and R. H. Rutford (1999), Landscape development in the Royal Society Range, southern Victoria Land, Antarctica: Stability since the mid-Miocene, Geomorphology, 28, 181–200. Talarico, F., S. Sandroni, C. Fielding, and C. Atkins (2000), Variability, petrography and provenance of basement clasts in core from CRP-2/2A, Victoria Land basin, Antarctica, Terra Ant., 7, 529–544. Thompson, R., and F. Oldfield (1986), Environmental Magnetism, p. 227, Allen and Unwin, Winchester, Mass. Venuti, A., F. Florindo, A. Carburlotto, M. W. Hounslow, C.-D. Hillenbrand, E. Strada, F. M. Talarico, and A. Cavallo (2011), Late Quaternary sediments from deep-sea sediment drifts on the Antarctic Peninsula Pacific margin: Climatic control on the provenance of minerals, J. Geophys. Res., 116, B06104, doi:10.1029/2010JB007952. Verosub, K. L., and A. P. Roberts (1995), Environmental magnetism: Past, present, and future, J. Geophys. Res., 100, 2175–2192. Verosub, K. L., F. Florindo, L. Sagnotti, A. P. Roberts, and G. S. Wilson (2000), Environmental magnetism of Oligocene–Miocene glaciomarine strata from the CRP-2/2A drillcore, Victoria Land Basin, Antarctica, Terra Ant., 7, 599–608. Watkins, D. K. (2007), Quantitative analysis of the calcareous nannofossil assemblages from CIROS-1, Victoria Land Basin, Antarctica, J. Nannoplankton Res., 29, 130–137. Watkins, D. K., and G. Villa (2000), Palaeogene calcareous nannofossils from CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 443–452. Webb, P.-N., and D. M. Harwood (1991), Late Cenozoic glacial history of the Ross embayment, Antarctica, Quat. Sci. Rev., 10, 215–223. Wilson, G. S., A. P. Roberts, K. L. Verosub, F. Florindo, and L. Sagnotti (1998), Magnetobiostratigraphic chronology of the Eocene-Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: Implications for Antarctic glacial history, Geol. Soc. Am. Bull., 110, 35–47. Wilson, G. S. et al. (2000a), Chronostratigraphy of the CRP-2/2A drillhole, Ross Sea, Antarctica, Terra Ant., 7, 647–655. Wilson, G. S., F. Florindo, L. Sagnotti, K. L. Verosub, and A. P. Roberts (2000b), Magnetostratigraphy of Oligocene–Miocene glaciomarine strata from the CRP-2/2A core, Victoria Land Basin, Antarctica, Terra Ant., 7, 631–646. Wilson, G. S. et al. (2002), Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0 0.1Ma from the CRP-2A drill core, Ross Sea, Antarctica, Geology, 30, 1043–1046. Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65Ma to present, Science, 292, 686–693.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorRoberts, A. P.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorBohaty, S. M.en
dc.contributor.authorVerosub, K. L.en
dc.contributor.authorWilson, G. S.en
dc.contributor.authorZachos, J. C.en
dc.contributor.departmentResearch School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton, UK.en
dc.contributor.departmentDepartment of Geology, University of California, Davis, California, USA.en
dc.contributor.departmentDepartment of Marine Science, University of Otago, Dunedin, New Zealand.en
dc.contributor.departmentDepartment of Earth and Planetary Sciences, University of California, Santa Cruz, California, USA.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptNational Oceanography Centre, University of Southampton, Southampton, UK.-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.deptDepartment of Geology, University of Otago, PO Box 56, Dunedin - New Zealand-
crisitem.author.deptUniversity of California, Santa Cruz, USA-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Roberts et al 2013 JGR 118 1845-1861.pdf21.63 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s) 50

266
checked on Mar 27, 2024

Download(s)

29
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric