Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8765
DC FieldValueLanguage
dc.contributor.authorallMinelli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBilli, A.; CNR-IGAGen
dc.contributor.authorallFaccenna, C.; Università Roma Treen
dc.contributor.authorallGervasi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallGuerra, I.; Università della Calabriaen
dc.contributor.authorallOrecchio, B.; Università di Messinaen
dc.contributor.authorallSperanza, G.; Università Roma Treen
dc.date.accessioned2013-09-20T07:37:10Zen
dc.date.available2013-09-20T07:37:10Zen
dc.date.issued2013-09en
dc.identifier.urihttp://hdl.handle.net/2122/8765en
dc.description.abstractIntegrating seismic reflection profiles, well logs, and field evidence with GPS velocities from a network installed in Calabria, southern Italy, we have discovered that the Crotone basin is gliding toward the Ionian Sea over a buried viscous salt layer. This previously unknown megaslide (~1000 km2) is characterized by an onshore updip extensional domain and an offshore downdip toe-thrust rim. The GPS velocity from the Crotone station is significantly higher than velocities from other stations in the region and differently oriented. We ascribe at least part of the anomalous GPS velocity from the Crotone station to the seaward motion of the megaslide or part of it. From the GPS velocity and other evidence we obtain a viscosity of the buried salt layer within the known range of rock salt viscosity in nature.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/40(2013)en
dc.subjectseismic reflection profilesen
dc.subjectCalabriaen
dc.subjectsalten
dc.subjectlandslideen
dc.subjectGPSen
dc.titleDiscovery of a gliding salt-detached megaslide, Calabria, Ionian Sea, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber4220-4224en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.04. Marine geologyen
dc.identifier.doi10.1002/grl.50818en
dc.relation.referencesAftabi, P., M. Roustaie, I. Alsop, and C.J. Talbot (2010), InSAR mapping and modelling of an active Iranian salt extrusion, J. Geol. Soc. London, 167, 155-170. Albertz, M., C. Beaumont, J.W. Shimeld, S.J. Ings, and S. Gradmann (2010), An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models, Tectonics, 29, TC4017, doi:10.1029/2009TC002539. Blewitt, G., 1998. GPS data processing methodology: from theory to applications, in GPS for Geodesy, edited by Teunissen, P. and A. Kleusberg, Springer-Verlag, New York, pp. 231-270. Brun, J.-P., and X. Fort (2004), Compressional salt tectonics (Angolan margin), Tectonophysics, 382, 129-150. Chemia, Z., H. Schmeling, and H. Koyi (2009), The effect of the salt viscosity on future evolution of the Gorleben salt diapir, Germany, Tectonophysics, 473, 446-456. Cobbold, P.R., G. Gilchrist, I. Scotchman, D. Chiossi, F. Fonseca Chaves, F. Gomes De Souza, and R. Lilletveit (2010), Large submarine slides on a steep continental margin (Camamu Basin, NE Brazil), J. Geol. Soc. London, 167, 583-592. D’Agostino, N., E. D’Anastasio, A. Gervasi, I. Guerra, M.R. Nedimović, L. Seeber, and M. Steckler (2011), Forearc extension and slow rollback of the Calabria Arc from GPS measurements, Geophys. Res. Lett., 38, L17304, doi:10.1029/2011GL048270. Ferranti, L., F. Antonioli, B. Mauz, A. Amorosi, G. Dai Pra, G. Mastronuzzi, C. Monaco, P. Orrù, M. Pappalardo, U. Radtke, P. Renda, P. Romano, P. Sansò, and V. Verrubbi (2006), Markers of the last interglacial sea level high stand along the coast of Italy: Tectonic implications, Quatern. Int., 145-146, 30-54. Furuya, M., K. Mueller, and J. Wahr (2007), Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric synthetic aperture radar and point target analysis: 1992-2002, J. Geophys. Res., 112, B06418, doi:10.1029/2006JB004302. Gaullier, V., and B.C. Vendeville (2005), Salt tectonics driven by sediment progradation: Part II - Radial spreading of sedimentary lobes prograding above salt. AAPG Bull., 89, 1081-1089. Hafid, M., A.W. Bally, A. Ait Salem, and E. Toto (2010), Salt tectonics and structural styles of the western High Atlas and the intersecting Essaouira-Cap Tafelney segments of the Moroccan Atlantic margin, International Association of Sedimentologists Special Publication, 43, doi: 10.1002/9781444392326.ch18. Herring, T.A. (2005), GLOBK, Global Kalman filter VLBI and GPS analysis program, version 10.2. Massachussets Institute of Technology, Cambridge. Hou, M.Z., H. Xie, and J. Yoon (Eds) (2010), Underground Storage of CO2 and Energy. Balkema, Leiden, The Netherlands, 384 p. Hudec, M.R., and M.P.A. Jackson (2007), Terra infirma: understanding salt tectonics, Earth-Sci. Rev., 82, 1-28. Jackson, C.A.-L. (2012), The initiation of submarine slope failure and the emplacement of mass transport complexes in salt-related minibasins: A three-dimensional seismic-reflection case study from the Santos Basin, offshore Brazil, Geol. Soc. Am. Bull., 124, 746-761. Jackson, M.P.A., and C.J. Talbot (1986). External shapes, strain rates, and dynamics of salt structures, Geol. Soc. Am. Bull., 97, 305-323. Mauduit, T., G. Guerin, J.P. Brun, and H. Lecanu (1997), Raft tectonics: the effects of basal slope angle and sedimentation rate on progressive extension, J. Struct. Geol., 19, 1219-1230. Minelli, L., and C. Faccenna (2010), Evolution of the Calabrian accretionary wedge (central Mediterranean), Tectonics, 29, TC4004, doi:10.1029/2009TC002562. Morelli, D., A. Cuppari, E. Colizza, and F. Fanucci (2011), Geomorphic setting and geohazard-related features along the Ionian Calabrian margin between Capo Spartivento and Capo Rizzuto (Italy), Mar. Geophys. Res., 32, 139-149. Mukherjee, S., C. Talbot, and H. Koyi (2010), Viscosity estimates of salt in the Hormuz and Namakdan salt diapirs, Persian Gulf, Geol. Mag., 147, 497-507. Reitz, M.A., and L. Seeber (2012), Arc-parallel strain in a short rollback-subduction system: the structural evolution of the Crotone basin (northeastern Calabria, southern Italy), Tectonics, 31, TC4017, doi:10.1029/2011TC003031. Rowan, M., F.J. Peel, and B.C. Vendeville (2004), Gravity-driven fold belts on passive margins, in Thrust Tectonics and Hydrocarbon Systems, edited by K.R. McKlay, American Association of Petroleum Geologists Memoir 82, pp. 157-182. Rowan, M.G., and B.C. Vendeville (2006), Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia, Mar. Petrol. Geol., 23, 871-891. Serpelloni, E., M. Anzidei, P. Baldi, G. Casula, and A. Galvani (2005), Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS networks, Geophys. J. Int., 161, 861-880. Speranza, F., Macrì, P., Rio, D., Fornaciari, E., and C. Consolaro (2011), Paleomagnetic evidence for a post-1.2 Ma disruption of the Calabria terrane: Consequences of slab breakoff on orogenic wedge tectonics, Geol. Soc. Am. Bull., 123, 925-933. Stanley, J.-D., and M.P. Bernasconi (2012), Buried and submerged Greek archaeological coastal structures and artifacts as gauges to measure late Holocene seafloor subsidence off Calabria, Italy. Geoarchaeology, 27, 189-205. Turcotte, D.L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge Univ. Press, New York. Van Dijk, J.P., M. Bello, G.P. Brancaleoni, G. Cantarella, V. Costa, A. Frixa, F. Golfetto, S. Merlini, M. Riva, S. Torricelli, C. Toscano, and A. Zerilli (2000), A regional structural model for the northern sector of the Calabrian Arc (southern Italy), Tectonophysics, 324, 267-320. Vendeville, B.C. (2005), Salt tectonics driven by sediment progradation: Part I - Mechanics and kinematics. AAPG Bull., 89, 1071-1079. Weinberg, R.F. (1993), The upward transport of inclusions in Newtonian and power-law salt diapirs, Tectonophysics, 228 141-150. Weinberger, R., V. Lyakhovsky, G. Baer, and Z.B. Begin (2006), Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective viscosity of rock salt. Geochem. Geophy. Geosy., 7, Q05014, doi:10.1029/2005GC001185. Zecchin, M., F. Massari, D. Mellere, and G. Prosser (2003), Architectural styles of prograding wedges in a tectonically active setting, Crotone Basin, Southern Italy, Journal of the Geological Society [London], 160, 863-880. Zecchin, M., M. Caffau, D. Civile, S. Critelli, A. Di Stefano, R. Maniscalco, F. Muto, G. Sturiale, and C. Roda (2012), The Plio-Pleistocene evolution of the Crotone Basin (southern Italy): Interplay between sedimentation, tectonics and eustasy in the frame of Calabrian Arc migration, Earth-Sci. Rev., 115, 273-303.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0094-8276en
dc.relation.eissn1944-8007en
dc.contributor.authorMinelli, L.en
dc.contributor.authorBilli, A.en
dc.contributor.authorFaccenna, C.en
dc.contributor.authorGervasi, A.en
dc.contributor.authorGuerra, I.en
dc.contributor.authorOrecchio, B.en
dc.contributor.authorSperanza, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCNR-IGAGen
dc.contributor.departmentUniversità Roma Treen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversità della Calabriaen
dc.contributor.departmentUniversità Roma Treen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptDipartimento di Biologia Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, Cs-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.orcid0000-0002-9395-3905-
crisitem.author.orcid0000-0002-6368-1873-
crisitem.author.orcid0000-0001-7362-666X-
crisitem.author.orcid0000-0003-2120-833X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Minelli et al., 2013.pdfmain article705.51 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on Feb 10, 2021

Page view(s) 20

479
checked on Apr 17, 2024

Download(s) 50

67
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric