Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Madonia, P.*
Cusano, P.*
Diliberto, I. S.*
Cangemi, M.*
Title: Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity
Title of journal: Physics and Chemistry of the Earth
Series/Report no.: /63(2013)
Publisher: Elsevier Science Limited
Issue Date: 2013
DOI: 10.1016/j.pce.2013.06.001
Keywords: Crustal transient
Fumarole temperature
Seismic activity
Stress field
Abstract: Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009–May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai–Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July–August 2011. We interpreted the seismic-related anomalies as ‘‘crustal fluid transients’’, i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.
Appears in Collections:04.08.06. Volcano monitoring
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
JPCE-Vulcano.pdfArticle1.7 MBAdobe PDFonly authorized users View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA