Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8734
DC FieldValueLanguage
dc.contributor.authorallRomano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMacelloni, G.; Istituto di Fisica Applicata 'Nello Carrara' (IFAC-CNR), Sesto Fiorentino (Florence), Italyen
dc.contributor.authorallSpogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBrogioni, M.; Istituto di Fisica Applicata 'Nello Carrara' (IFAC-CNR), Sesto Fiorentino (Florence), Italyen
dc.contributor.authorallMarinaro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMitchell, C. N.; University of Bath, Electronic and Electrical Engineering, Bath, United Kingdomen
dc.date.accessioned2013-08-01T08:48:33Zen
dc.date.available2013-08-01T08:48:33Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8734en
dc.description.abstractIn the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC) and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS) ionospheric scintillation and TEC monitor (GISTM) receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions), there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX) will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.en
dc.language.isoEnglishen
dc.publisher.nameINGVen
dc.relation.ispartofAnnals of geophysicsen
dc.relation.ispartofseries2 / 56 (2013)en
dc.subjectTotal electron contenten
dc.subjectAntarcticaen
dc.subjectGNSSen
dc.subjectGPSen
dc.subjectFaraday rotationen
dc.subjectIonosphereen
dc.titleMeasuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometersen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberR0219en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniquesen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.subject.INGV05. General::05.07. Space and Planetary sciences::05.07.02. Space weatheren
dc.identifier.doi10.4401/ag-6241en
dc.relation.referencesAbraham, S., and D.M. Le Vine (2004). Use of IRI to model the effect of ionosphere emission on Earth remote sensing at L-band, Adv. Space Res., 34, 2059-2066. Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson and C.N. Mitchell (2011). Bipolar climatology of GPS ionospheric scintillation at solar minimum, Radio Sci., 46, RS0D05; doi:10.102 9/2010RS004571. Committee on the Societal and Economic Impacts of Severe Space Weather Events (2008). Severe Space Weather Events – Understanding Societal and Economic Impacts Workshop Report, ISBN 0-309- 12770-X. Davis, K. (1990). Ionospheric Radio, London, Peregrinus, p. 276. Fisher, G., and J. Kunches (2011). Building resilience of the global positioning system to space weather, Space Weather, 9, S12004; doi:10.1029/2011SW000718. Floury, N. (2007). Estimation of Faraday rotation from auxiliary data, ESA Technical Note, TEC-EEP/2009. 437/NF. Freeman, A., and S.S. Saatchi (2004). On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures, Trans. on Geoscience and Remote Sensing, 42 (8), 1607-1616. Kerr, Y.H., P. Waldteufel, J-P. Wigneron, F. Cabot, J. Boutin, M-J. Escorihuela, N. Reul, C. Gruhier, S. Juglea, J. Font, S. Delwart, M.R. Drinkwater, A. Hahne, M. Martin-Neira and S. Mecklenburg (2010). The SMOS mission: a new tool for monitoring key elements of the global water cycle, Proc. IEEE, 98666- 98687; doi:10.1109/JPROC.2010.2043032. Le Vine, D.M., and S. Abraham (2000). Faraday rotation and passive microwave remote sensing of soil moisture from space, In: P. Pampaloni and S. Paloscia (eds.), Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere, Utrecht/ Boston/Köln/Tokyo, 89-96. Liu, Z., S. Skone, Y. Gao and A. Komjathy (2005). Ionospheric modeling using GPS data, GPS Sol., 9 (1), 63- 66; doi:10.1007/s10291-004-0129-z. Macelloni, G., M. Brogioni, P. Pampaloni, A. Cagnati and M.R. Drinkwater (2006). DOMEX 2004: An experimental campaign at Dome-C Antarctica for the calibration of spaceborne low-frequency microwave radiometers, Geosci. Rem. Sens., IEEE Transact., 44, 2642-2653. Macelloni, G., M. Brogioni, A. Crepaz, M. Drinkwater and J. Zaccaria (2009). DOMEX-2: L-band microwave emission measurements of the Antarctic Plateau, Geosci. Rem. Sens. Symposium, 2009 IEEE International, IGARSS, 2, II-1016-II-1019. Mannucci, A.J., B.D. Wilson and C.D. Edwards (1993). A new method for monitoring the Earth ionosphere total electron content using the GPS global network, In: Proceedings of ION GPS-93, 1323-1332. Meissner, T., and F.J. Wentz (2006). Polarization rotation and the third Stokes parameter: the effects of spacecraft attitude and Faraday rotation, Trans. Geosci. Rem. Sens., 44, 506-515. Romano, V., S. Pau, M. Pezzopane, E. Zuccheretti, B. Zolesi, G. De Franceschi and S. Locatelli (2008). The Electronic Space Weather Upper Atmosphere (eSWua) project at INGV: advances and state of the art, Annales Geophysicae, 26, 345-351. Sardon, E., A. Rius and N. Zarraoa (1994). Estimation of the transmitter and receiver differential biases and the ionospheric total electon content from global positioning system observations, Radio Sci. 29, 577. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M.H.O. Aquino and A. Dodson (2009). Climatology of GPS ionospheric scintillations over high and midlatitude European regions, Annales Geophysicae, 27, 3429-3437. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino and A. Dodson (2010). Climatologyof GNSS ionospheric scintillations at high and midlatitudes under different solar activity conditions, Il Nuovo Cimento B, 5/6, 623-632; doi:10.1393/ncb/i 2010-10857-7. Taylor, J.R. (1997). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurement, 2nd ed., University Science Books, Sausalito, California. Tsang, L. (1991). Polarimetric passive remote sensing of random discrete scatterers and rough surfaces, J. Electromag. Waves Appl., 5, 41-57. Van Dierendonck, A.J., J. Klobuchar and Q. Hua (1993). Ionospheric scintillation monitoring using commercial single frequency C/A code receivers, In: ION GPS-93 Proceedings of the Sixth International Technical Meeting of the Satellite Division of the Institute of Navigation (Salt Lake City, U.S.A.), 1333-1342. Webb, P.A., and E.A. Essex (1997). A simple model of the ionosphere plasmasphere system, In: A. Kulessa, G. James, D. Bateman and M. Tobar (eds.), Proceedings of the Workshop on Applications of Radio Science, (WARS'97, Barossa Valley, Australia), 190-195. Wernik, A.W., J.A. Secan and E.J. Fremouw (2003). Ionospheric irregularities and scintillation, Adv. Space Res., 31, 971-981. Yeh, K.C., and C.H. Liu (1982). Radio wave scintillations in the ionosphere, Proceedings of the IEEE 70 (4), 324-360. Yueh, S.H. (2000). Estimates of Faraday rotation withpassive microwave polarimetry for microwave remotesensing of Earth surfaces, Trans. Geosci. Rem. Sens., 38, 2434-2438.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRomano, V.en
dc.contributor.authorMacelloni, G.en
dc.contributor.authorSpogli, L.en
dc.contributor.authorBrogioni, M.en
dc.contributor.authorMarinaro, G.en
dc.contributor.authorMitchell, C. N.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto di Fisica Applicata 'Nello Carrara' (IFAC-CNR), Sesto Fiorentino (Florence), Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto di Fisica Applicata 'Nello Carrara' (IFAC-CNR), Sesto Fiorentino (Florence), Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniversity of Bath, Electronic and Electrical Engineering, Bath, United Kingdomen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto di Fisica Applicata 'Nello Carrara' (IFAC-CNR), Sesto Fiorentino (Florence), Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto di Fisica Applicata 'Nello Carrara' (IFAC-CNR), Sesto Fiorentino (Florence), Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.dept3Department of Electronic and Electrical Engineering, University of Bath-
crisitem.author.orcid0000-0002-7532-4507-
crisitem.author.orcid0000-0003-2310-0306-
crisitem.author.orcid0000-0002-6779-279X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2013_Romano_et_al_AG_TEC_Concordia.pdf5.71 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 10, 2021

Page view(s) 20

503
checked on Apr 24, 2024

Download(s) 50

251
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric