Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8707
DC FieldValueLanguage
dc.contributor.authorallPesci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallTeza, G.; Dipartimento di Geoscienze, Università di Padovaen
dc.contributor.authorallBonali, E.; DAPT, Università di Bolognaen
dc.contributor.authorallCasula, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallBoschi, E.; Dipartimento di Fisica, Università di Bolognaen
dc.date.accessioned2013-05-17T09:10:07Zen
dc.date.available2013-05-17T09:10:07Zen
dc.date.issued2013-02-28en
dc.identifier.urihttp://hdl.handle.net/2122/8707en
dc.description.abstractMonitoring damaged buildings in an area where an earthquake has occurred requires the use of techniques which provide rapid and safe measurements even in emergency conditions. In particular, remote sensing techniques like terrestrial laser scanning (TLS) can satisfy these requirements, since they produce very dense point clouds in little time and also allow an accurate geometric modeling of observed buildings. Nevertheless, strong constraints on TLS data acquisition geometry, such as acquisition distance and incidence angles, typically characterize an area in seismic emergency conditions. In order to correctly interpret the data, it is necessary to estimate errors affecting TLS measurements in these critical conditions. A reliable estimation can be achieved by means of experiments and numerical simulations aimed at quantifying a realistic noise level, with emphasis on reduction of artifacts due to data acquisition, registration and modeling. This paper proposes a data analysis strategy in which TLS-based morphological maps computed as point-to-primitive differences are created. The method can be easily used for accurate surveying in emergency conditions. In order to demonstrate the proposed method in very diverse situations, it was applied to rapidly detect deformation traces in the San Giacomo Roncole Campanile (Modena), the Asinelli tower (Bologna) and the Cantalovo Church (Verona), three buildings damaged by the Mw 5.9 Emilia Romagna 2012 earthquake (Italy). 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevieren
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofISPRS Journal of Photogrammetry and Remote Sensingen
dc.relation.ispartofseries/79(2013)en
dc.subjectArchitectureen
dc.subjectChange Detectionen
dc.subjectLaser Scanningen
dc.subjectModelen
dc.subjectPerformanceen
dc.titleA laser scanning-based method for fast estimation of seismic-induced building deformationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber185-198en
dc.identifier.URLhttp://www.sciencedirect.com/science/article/pii/S0924271613000646en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.1016/j.isprsjprs.2013.02.021en
dc.relation.referencesArmesto-González, J., Riveriro-Rodríguez, B., González-Aguilera, D., Rivas-Brea, M.T., 2010. Terrestrial laser scanning intensity data applied to damage detection for historical buildings. Journal of Archaeological Science 37 (12), 3037–3047. Catbas, F.N., Brown, D.L., Aktan, A.E., 2006. Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures. Journal of Structural Engineering 132 (11), 1699–1712. Clark, M.R., McCann, D.M., Forde, M.C., 2003. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT&E International 36 (4), 265–275. Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A., Girardi, S., 2009. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 64 (6), 522–528. Gentile, C., Saisi, A., 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction Building Materials 21 (6), 1311–1321. Grussenmeyer, P., Hanke, K., Streilein, A., 2002. Architectural photogrammetry. In: Kasser, M., Egels, Y. (Eds.), Digital Photogrammetry. Taylor & Francis, London, UK, pp. 300–339. Innovmetric, 2012. PolyWorks Surveyor datasheet site. <http:// www.innovmetric.com/polyworks/Surveying/brochures.aspx?lang=en> (accessed 07.01.13). ISIDe, 2012. Italian Seismological Instrumental Database (ISIDe). <http:// iside.rm.ingv.it/iside/standard/index.jsp?lang=en> (accessed 07.01.13). Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A., Kukko, A., 2011. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing 3 (10), 2207–2221. Lubowiecka, I., Armesto, J., Arias, P., Lorenzo, H., 2009. Historic bridge modelling using laserscanning, ground penetrating radar and finite element methods in the context of structural dynamics. Engineering Structures 31 (11), 2667–2676. Miranda, L., Cardani, G., Binda, L., Acito, M., Guedes, J., 2008. Experimental and numerical study on the application of the flat-jack tests to masonry walls. In: Fodde, E. (Ed.), Proc. VI International Conference on Structural Analysis of Historic Construction, SAHC08, Bath, UK, 2–4 July 2008. CRC Press, Boca Raton, FL, pp. 75–883. Murphy, M., McGovern, E., Pavia, S., 2009. Historic building information modelling (HBIM). Structural Survey 27 (4), 311–327. Núñez Andrés, M.A., Buill Pozuelo, F., 2009. Evolution of the architectural and heritage representation. Landscape and Urban Planning 91 (2), 105–112. Optech, 2012. Optech ILRIS 3-D datasheet site. <http://www.optech.ca/i3dprodlineilris3d. htm> (accessed 07.01.13). Pesci, A., Teza, G., 2008. Effects of surface irregularities on intensity data from laser scanning: an experimental approach. Annals of Geophysics 51 (56), 839–848. Pesci, A., Casula, G., Boschi, E., 2011a. Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): detailed deformation patterns of two ancient leaning buildings. Journal of Cultural Heritage 12 (2), 117–127. Pesci, A., Teza, G., Bonali, E., 2011b. Terrestrial laser scanner resolution: numerical simulations and experiments on spatial sampling optimization. Remote Sensing 3 (1), 167–184. Pieraccini, M., Noferini, L., Mecatti, D., Macaluso, G., Atzeni, C., Teza, G., Galgaro, A., Zaltron, N., 2006a. Radar interferometry and laser scanning for monitoring the stability of an alpine urban site. IEEE Transactions on Geosciences and Remote Sensing 44 (9), 2335–2342. Pieraccini, M., Fratini, M., Parrini, F., Atzeni, C., 2006b. Dynamic monitoring of bridges using a high-speed coherent radar. IEEE Transactions on Geosciences and Remote Sensing 44 (11), 3284–3288. Riva, P., Perotti, F., Cavaglieri, L., Gelmini, A., 2003. Analisi simica della Torre degli Asinelli. In: Boschi, E. Guidoboni, E. (Eds.), I terremoti a Bologna e nel suo territorio dal XII al XX secolo. Compositori, Bologna, I, pp. 365–383 (in Italian). Van Genechten, B., Demeyere, T., Herinckx, S., Goos, J., Schueremans L., Roose, D., Santana, M., 2009. Terrestrial laser scanning in architectural heritage – deformation analysis and the automatic generation of 2D cross-sections. In: Proc. 22nd CIPA Symposium, Kyoto, Japan, 11–15 October, paper 184, pp. 1–6 <http://cipa.icomos.org/fileadmin/template/doc/KYOTO/184.pdf> (accessed 07.01.2013. Yastikly, N., 2007. Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal of Cultural Heritage 8 (4), 423– 427.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0924-2716en
dc.relation.eissn1872-8235en
dc.contributor.authorPesci, A.en
dc.contributor.authorTeza, G.en
dc.contributor.authorBonali, E.en
dc.contributor.authorCasula, G.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentDipartimento di Geoscienze, Università di Padovaen
dc.contributor.departmentDAPT, Università di Bolognaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentDipartimento di Fisica, Università di Bolognaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento di Geoscienze - Univ. di Padova-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0003-1863-3132-
crisitem.author.orcid0000-0001-7934-2019-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Pesci_et_al_ISPRS_2013.pdfarticle4.39 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

50
checked on Feb 10, 2021

Page view(s) 50

532
checked on Mar 27, 2024

Download(s)

27
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric