Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8701
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPietrella, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallScotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZuccheretti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMakris, J.; Technological Educational Institute of Crete, P.O. Box 1939 Chania, Crete, Greeceen
dc.date.accessioned2013-05-07T08:49:00Zen
dc.date.available2013-05-07T08:49:00Zen
dc.date.issued2013-05-03en
dc.identifier.urihttp://hdl.handle.net/2122/8701en
dc.description.abstractThe three-dimensional (3-D) electron density representation of the ionosphere computed by the assimilative IRI-SIRMUP-P (ISP) model was tested using IONORT (IONOspheric Ray-Tracing), a software application for calculating a 3-D ray-tracing for high frequency (HF) waves in the ionospheric medium. A radio link was established between Rome (41.8°N, 12.5°E) in Italy, and Chania (35.7°N, 24.0°E) in Greece, within the ISP validity area, and for which oblique soundings are conducted. The ionospheric reference stations, from which the autoscaled foF2 and M(3000)F2 data and real-time vertical electron density profiles were assimilated by the ISP model, were Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E) in Italy, and Athens (38.0°N, 23.5°E) in Greece. IONORT was used, in conjunction with the ISP and the International Reference Ionosphere (IRI) 3-D electron density grids, to synthesize oblique ionograms. The comparison between synthesized and measured oblique ionograms, both in terms of the ionogram shape and the maximum usable frequency characterizing the radio path, demonstrates both that the ISP model can more accurately represent real conditions in the ionosphere than the IRI, and that the ray-tracing results computed by IONORT are reasonably reliable.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofRadio Scienceen
dc.relation.ispartofseries/48(2013)en
dc.subjectElectron Densityen
dc.subjectRay-Tracingen
dc.subjectOblique Ionogramen
dc.subjectIRIen
dc.subjectAssimilative Modellingen
dc.titleTesting the IONORT-ISP system: A comparison between synthesized and measured oblique ionogramsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber167–179en
dc.identifier.URLhttp://onlinelibrary.wiley.com/doi/10.1002/rds.20018/abstracten
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneousen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniquesen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneousen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.01. Data processingen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.identifier.doi10.1002/rds.20018en
dc.relation.referencesAngling, M. J., and B. Khattatov (2006), Comparative study of two assimilative models of the ionosphere, Radio Sci., 41, RS5S20, doi:10.1029/2005RS003372. Angling, M. J., and N. K. Jackson-Booth (2011), A short note on the assimilation of collocated and concurrent GPS and ionosonde data into the Electron Density Assimilative Model, Radio Sci., 46, RS0D13, doi:10.1029/2010RS004566. Azzarone, A., C. Bianchi, M. Pezzopane, M. Pietrella, C. Scotto, and A. Settimi (2012), IONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere, Comp. Geosc., 42, 57-63, doi:10.1016/j.cageo.2012.02.008. Bamford, R. (2000), Oblique soundings - Project Final Report, Radio Communication Research Unit, Rutheford Appleton Laboratory, Chilton, Didcot, UK. Barry Research Corporation (1975), VOS-1A User Manual. Palo Alto, California, USA. Barry Research Corporation (1989), RCS-5B Chirpsounder Receiver Operating and Service Manual. Palo Alto, California, USA. Bennett, J. A., P. L. Dyson, and R. J. Norman (2004), Progress in radio ray tracing in the ionosphere, Radio Sci. Bull., 310, 81-91. Bianchi, C., A. Settimi, C. Scotto, A. Azzarone, and A. Lozito (2011), A method to test HF ray tracing algorithm in the ionosphere by means of the virtual time delay, Adv. Space Res., 48, 1600–1605, doi:10.1016/j.asr.2011.07.020. Bilitza, D., and B. W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42(4), 599–609, doi:10.1016/j.asr.2007.07.048. Budden, K. G. (1988), The Propagation of Radio Wave. Cambridge University Press, Cambridge, UK, pp. 688. Chapman, S. (1931), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proceedings of the Physical Society of London, 43(1), 26–45. Chen J., J. A. Bennett, and P. L. Dyson (1992), Synthesis of oblique ionograms from vertical ionograms using quasi-parabolic segment models of the ionosphere, J. Atmos. Solar-Terr. Phys., 54(3-4), 323–331. Decker, D. T., and L. F. McNamara (2007), Validation of ionospheric weather predicted by Global Assimilation of Ionospheric measurements (GAIM) models, Radio Sci., 42, RS4017, doi:10.1029/2007RS003632. Fridman, S. V., L. J. Nickisch, M. Aiello, and M. Hausman (2006), Real-time reconstruction of the three-dimensional ionosphere using data from a network of GPS receivers, Radio Sci., 41, RS5S12, doi:10.1029/2005RS003341. Fridman, S. V., L. J. Nickisch, and M. Hausman (2009), Personal-computer-based system for real-time reconstruction of the three-dimensional ionosphere using data from diverse sources, Radio Sci., 44, RS3008, doi:10.1029/2008RS004040. Galkin, I. A., and B. W. Reinisch (2008), The new ARTIST 5 for all Digisondes, in Ionosonde Network Advisory Group Bulletin 69, pp. 1–8, IPS Radio and Space Serv., Surry Hills, N. S. W., Australia, Available from <http://www.ips.gov.au/IPSHosted/INAG/web-69/2008/artist5-inag.pdf>. Gething, P. J. D. (1969), The calculation of electron density profiles from oblique ionograms, J. Atmos. Solar-Terr. Phys., 31(3), 347-354. Houminer, Z., J. A. Bennett, and P. L. Dyson (1993), Real-time ionospheric model updating, J. Electr. Electron. Eng., Aust., 13(2), 99–104. Huang, X., and B. W. Reinisch (2006), Real-time HF ray tracing through a tilted ionosphere, Radio Sci., 41, RS5S47, doi:10.1029/2005RS003378. Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report, 75–76, U.S. Department of Commerce, Office of Telecommunication, U.S. Government Printing Office, Washington, USA, 185 pp.. Kashcheyev, A., B. Nava, and S. M. Radicella (2012), Estimation of higher-order ionospheric errors in GNSS positioning using a realistic 3-D electron density model, Radio Sci., 47, RS4008, doi:10.1029/2011RS004976. Kopka H., and H. G. Möller (1968), MUF Calculations Including the Effect of the Earth’s Magnetic Field, Radio Sci., 3, 53-56. McNamara, L. F., D. T. Decker, J. A. Welsh, and D. G. Cole (2007), Validation of the Utah State University Global Assimilation of Ionospheric Measurements (GAIM) model predictions of the maximum usable frequency for a 3000 km circuit, Radio Sci., 42, RS3015, doi:10.1029/2006RS003589. McNamara, L. F., C. R. Baker, and D. T. Decker (2008), Accuracy of USU-GAIM specifications of foF2 and M(3000)F2 for a worldwide distribution of ionosonde locations, Radio Sci., 43, RS1011, doi:10.1029/2007RS003754. McNamara, L. F., J. M. Retterer, C. R. Baker, G. J. Bishop, D. L. Cooke, C. J. Roth, and J. A. Welsh (2010), Longitudinal structure in the CHAMP electron densities and their implications for global ionospheric modeling, Radio Sci., 45, RS2001, doi:10.1029/2009RS004251. McNamara, L. F., G. J. Bishop, and J. A. Welsh (2011), Assimilation of ionosonde profiles into a global ionospheric model, Radio Sci., 46, RS2006, doi:10.1029/2010RS004457. Nickisch, L. J. (2008), Practical Applications of Haselgrove’s Equations for HF systems, Radio Sci. Bulletin, 325, 36-48. Pezzopane, M., M. Pietrella, A. Pignatelli, B. Zolesi, and Lj. R. Cander (2012), Testing the three-dimensional IRI-SIRMUP-P mapping of the ionosphere for disturbed periods, Adv. Space Res., doi: 10.1016/j.asr.2012.11.028. Pezzopane, M., M. Pietrella, A. Pignatelli, B. Zolesi, and L. R. Cander (2011), Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling, Radio Sci., 46, RS5009, doi:10.1029/2011RS004697. Pezzopane, M., and C. Scotto (2005), The INGV software for the automatic scaling of foF2 and MUF(3000)F2 from ionograms: A performance comparison with ARTIST 4.01 from Rome data, J. Atmos. Solar-Terr. Phys., 67(12), 1063–1073, doi:10.1016/j.jastp.2005.02.022. Pezzopane, M., and C. Scotto (2007), The automatic scaling of critical frequency foF2 and MUF(3000)F2: A comparison between Autoscala and ARTIST 4.5 on Rome data, Radio Sci., 42, RS4003, doi:10.1029/2006RS003581. Reinisch, B. W., and X. Huang (1983), Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottom side ionograms, Radio Sci., 18(3), doi:10.1029/RS018i003p00477. Reinisch, B. W., X. Huang, I. A. Galkin, V. Paznukhov, and A. Kozlov (2005), Recent advances in real-time analysis of ionograms and ionospheric drift measurements with Digisondes, J. Atmos. Solar-Terr. Phys., 67(12), 1054–1062, doi:10.1016/j.jastp.2005.01.009. Reinisch, B. W., I. A. Galkin, G. M. Khmyrov, A. V. Kozlov, K. Bibl, I. A. Lisysyan, G. P. Cheney, X. Huang, D. F. Kitrosser, V. V. Paznukhov, Y. Luo, W. Jones, S. Stelmash, R. Hamel, and J. Grochmal (2009), Radio Sci., 44, RS0A24, doi:10.1029/2008RS004115. Scotto, C. (2009), Electron density profile calculation technique for Autoscala ionogram analysis, Adv. Space Res., 44(6), 756–766, doi:10.1016/j.asr.2009.04.037. Scotto, C., M. Pezzopane, and B. Zolesi (2012), Estimating the vertical electron density profile from an ionogram: On the passage from true to virtual heights via the target function method, Radio Sci., 47, RS1007, doi:10.1029/2011RS004833. Shim, J. S. et al. (2011), CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground-based observations, Space Weather, 9, S12003, doi:10.1029/2011SW000727. Thompson, D. C., L. Scherliess, J. J. Sojka, and R. W. Schunk (2006), The Utah State University Gauss-Markov Kalman filter of the ionosphere: The effect of slant TEC and electron density profile data on model fidelity, J. Atmos. Solar-Terr. Phys., 68(9), 947–958, doi:10.1016/j.jastp.2005.10.011. Tsagouri, I., B. Zolesi, A. Belehaki, and L. R. Cander (2005), Evaluation of the performance of the real-time updated simplified ionospheric regional model for the European area, J. Atmos. Solar-Terr. Phys., 67(12), 1137–1146, doi:10.1016/j.jastp.2005.01.012. Zolesi, B., L. R. Cander, and G. de Franceschi (1996), On the potential applicability of the simplified ionospheric regional model to different midlatitude areas, Radio Sci., 31(3), 547–552, doi:10.1029/95RS03817. Zolesi, B., A. Belehaki, I. Tsagouri, and L. R. Cander (2004), Real-time updating of the simplified ionospheric regional model for operational applications, Radio Sci., 39, RS2011, doi:10.1029/2003RS002936. Zuccheretti, E., G. Tutone, U. Sciacca, C. Bianchi, and B. J. Arokiasamy (2003), The new AIS-INGV digital ionosonde, Ann. Geophys. Italy, 46(4), 647–659.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.obiettivoSpecifico5.4. Banche dati di geomagnetismo, aeronomia, clima e ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.relation.issn0048-6604en
dc.relation.eissn1944-799Xen
dc.contributor.authorSettimi, A.en
dc.contributor.authorPezzopane, M.en
dc.contributor.authorPietrella, M.en
dc.contributor.authorBianchi, C.en
dc.contributor.authorScotto, C.en
dc.contributor.authorZuccheretti, E.en
dc.contributor.authorMakris, J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentTechnological Educational Institute of Crete, P.O. Box 1939 Chania, Crete, Greeceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptTechnological Educational Institute of Crete, Greece-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.author.orcid0000-0001-5800-2322-
crisitem.author.orcid0000-0001-9069-4090-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.orcid0000-0002-9437-6775-
crisitem.author.orcid0000-0003-1732-4557-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Figures&Table.7zFigures&Table (Zipped folder of tiff and png files)5.72 MB7-zip
Settimi et al., Radio Science (2013).docxSubmitted manuscript (Word)66.35 kBMicrosoft Word
Settimi et al., Radio Science (2013).pdfAccepted manuscript (pdf)983.29 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

24
checked on Feb 10, 2021

Page view(s) 1

20,458
checked on Mar 27, 2024

Download(s) 20

500
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric