Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8686
DC FieldValueLanguage
dc.contributor.authorallMonna, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCimini, G. B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMontuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMatias, L.; Centro de Geofísica, Universidade de Lisboa, Lisbon, Portugal.en
dc.contributor.authorallGeissler, W. H.; Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany.en
dc.contributor.authorallFavali, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-05-07T07:46:49Zen
dc.date.available2013-05-07T07:46:49Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8686en
dc.description.abstractIn this study, we present a three-dimensional P wave upper-mantle tomography model of the southwest Iberian margin and Alboran Sea based on teleseismic arrival times recorded by Iberian and Moroccan land stations and by a seafloor network deployed for 1 year in the Gulf of Cadiz area during the European Commission Integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system (EC NEAREST) project. The three-dimensional model was computed down to 600 kmdepth. The tomographic images exhibit significant velocity contrasts, as large as 3%, confirming the complex evolution of this plate boundary region. Prominent high-velocity anomalies are found beneath Betics-Alboran Sea, off-shore southwest Portugal, and north Portugal, at sublithospheric depths. The transition zones between high- and low-velocity anomalies in southwest and south Iberia are associated to the contact of oceanic and continental lithosphere. The fast structure below the Alboran Sea-Granada area depicts an L-shaped body steeply dipping from the uppermost mantle to the transition zone where it becomes less curved. This anomaly is consistent with the results of previous tomographic investigations and recent geophysical data such as stress distribution, GPS measurements of plate motion, and anisotropy patterns. In the Atlantic domain, under the Horseshoe Abyssal Plain, the main feature is a high-velocity zone found at uppermost mantle depths. This feature appears laterally separated from the positive anomaly recovered in the Alboran domain by the interposition of low-velocity zones which characterize the lithosphere beneath the southwest Iberian peninsula margin, suggesting that there is no continuity between the high-velocity anomalies of the two domains west and east of the Gibraltar Strait.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/118 (2013)en
dc.subjectUpper-mantle seismic tomographyen
dc.subjectland and marine seismic networksen
dc.subjectSW Iberian marginen
dc.subjectAlboran Seaen
dc.subjectAtlantic domainen
dc.subjectGulf of Cadizen
dc.titleNew insights from seismic tomography on the complex geodynamic evolution of two adjacent domains: Gulf of Cadiz and Alboran Seaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1587–1601en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.08. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.identifier.doi10.1029/2012JB009607en
dc.relation.referencesAki, K., A. Christofferson, and E. Husebye (1977), Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82, 277–296. Bijwaard, H., andW. Spakman (2000), Nonlinear global P-wave tomography by iterated linearised inversion, Geophys. J. Int., 141,71–82. Blanco, M. J., and W. Spakman (1993), The P-wave velocity structure of the mantle below the Iberian Peninsula: Evidence for a subducted lithosphere below southern Spain, Tectonophy., 221, 13–34. Bokelmann, G., and E. Maufroy (2007), Mantle structure under Gibraltar constrained by dispersion of body waves, Geophys. Res. Lett., 34, L22305, doi:10.1029/2007GL030964. Bokelmann, G., E. Maufroy, L. Buontempo, J. Morales, and G. Barruol (2010), Testing oceanic subduction and convective removal models for the Gibraltar arc: Seismological constraints from dispersion and anisotropy, Tectonophys., doi:10.1016/j.tecto.2010.08.004. Buforn, E., M. Bezzeghoud, A. Udıas, and C. Pro (2004), Seismic sources on the Iberia-African plate boundary and their tectonic implications, Pure Appl. Geophys., 161, 623–646. Buontempo, L., G. H. R. Bokelmann, G. Barruol, and J. Morales (2008), Seismic anisotropy beneath southern Iberia from SKS splitting, Earth Planet. Sci. Lett., 273, 237–250, doi:10.1016/j.epsl.2008.06.024. Calvert, A., E. Sandvol, D. Seber, M. Barazangi, F. Vidal, G. Alguacil, and N. Jabour (2000), Propagation of regional seismic phases (Lg and Sn) and Pn velocity structure along the Africa–Iberia plate boundary zone: Tectonic implications, Geophys. J. Int., 142, 384–408, doi:10.1046/ j.1365-246x.2000.00160.x. Carrara G., and NEAREST Team (2008), NEAREST 2008 CRUISE PRELIMINARY REPORT R/V URANIA, 1st Aug 2008- 04th Sept 2008, Technical Report ISMAR-CNR,(http://nearest.bo.ismar.cnr.it/ documentation/REPORT_NEAREST_2008_completo.pdf). Conrad, C. P., and C. Lithgow-Bertelloni (2006), Influence of continental roots and asthenosphere on plate-mantle coupling, Geophys. Res. Lett., 33, L05312, doi:10.1029/2005GL025621. Díaz, J., and J. Gallart (2009), Crustal structure beneath the Iberian Peninsula and surrounding waters: a new compilation of deep seismic sounding results, Phys. Earth Planet. Int., 173, 181–190, doi:10.1016/j. pepi.2008.11.008. Diaz, J., J. Gallart, A. Villaseñor, F. Mancilla, A. Pazos, D. Córdoba, J. A. Pulgar, P. Ibarra, and M. Harnafi (2010), Mantle dynamics beneath the Gibraltar Arc (western Mediterranean) from shear–wave splitting measurements on a dense seismic array, Geophys. Res. Lett., 37, L18304, doi:10.1029/2010GL044201. Duggen, S., K. Hoernle, P. Van Den Bogaard, and C. Harris (2004), Magmatic evolution of the Alboran Region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis, Earth and Planet. Sci. Lett., 218, 91–108. Duggen, S., K. Hoernle, P. Van Den Bogaard, and D. Garbe-Schönberg (2005), Post-Collisional fransition from subductionto intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere, J. Petr., 46, 6, doi:10.1093/ petrology/egi013. Dziewonski, A. M., and F. Gilbert (1976), The effect of small, aspherical perturbations on travel times and a re-examination of the corrections for the ellipticity, Geophys. J. R. Astron. Soc., 44, 7–17. Evans, J. R., and U. Achauer, (1993), Teleseismic velocity tomography using the ACH method: theory and application to continental-scale studies, in Seismic Tomography: Theory and practice, edited by H. M. Iyer and K. Hirahara, pp. 319–360, Chapman & Hall, London. Faccenna C., C. Piromallo., A. Crespo-Blanc, L. Jolivet, and F. Rossetti (2004), Lateral slab deformation and the origin of thewesternMediterranean arcs, Tectonics,. 23, TC1012, doi:10.1029/2002TC001488. Fullea, J., M. Fernàndez, H. Zeyen, and J. Vergés (2007), A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System and adjacent zones, Tectonophys., 430, 97–117, doi:10.1016/j. tecto.2006.11.003. Fullea, J., J. C. Afonso, M. Fernàndez, J. Vergés, and H. Zeyen (2010), The structure and evolution of the lithosphere—asthenosphere boundary beneath the Trans-Mediterranean region, Lithos, 120(1–2), 74–95. Geissler, W. H., et al. (2010), Focal mechanisms for sub–crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment, Geophys. Res. Lett., 37, L18309, doi:10.1029/2010GL044289. Grad, M., T. Tiira, and ESC Working Group (2009), The Moho depth map of the European Plate, Geophys. J. Int., 176, 279–292, doi:10.1111/ j.1365-246X.2008.03919.x. Grange M., U. Schärer, R. Merle, J. Girardeau, and G. Cornen (2010), Plume-Lithosphere Interaction during Migration of Cretaceous Alkaline Magmatism in SW Portugal: Evidence from U-Pb Ages and Pb-Sr-Hf Isotopes, J. Petr., 51(5), 1143–1170. Grevemeyer I., N. Kaul, and A. Kop (2009), Heat flow anomalies in the Gulf of Cadiz and off Cape San Vincente, Portugal , Mar. Petrol. Geol., 26, 795–804. Gudmundsson, O., J. H. Davies, and R. W. Clayton (1990), Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data, Geophys. J. Int., 102(1), pp. 25–43. Gurnis, M., C. Hall, and L. Lavier (2004), Evolving force balance during incipient subduction, Geochem. Geophys. Geosyst., 5, Q07001, doi:10.1029/ 2003GC000681. Gutscher, M. A., J. Malod, J. P. Rehault, I. Contrucci, F. Klingelhoefer, L. Mendes–Victor, and W. Spakman (2002), Evidence for active subduction beneath Gibraltar, Geology, 30, 1071–1074, doi:10.1130/ 0091-7613. Gutscher, M.-A., S. Dominguez, G. K. Westbrook, and P. Leroy (2009), Deep structure, recent deformation and analog modeling of the Gulf of Cadiz accretionary wedge: Implications for the 1755 Lisbon earthquake, Tectonophys., 475, 85–97, doi:10.1016/j.tecto.2008.11.031. Husen, S., R. Quintero, E. Kissling, and B. Hacker (2003), Subduction-zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modelling, Geophys. J. Int., 155, 11–32. Iribarren, L., J. Vergés, F. Camurri, J. Fullea, and M. Fernandez (2007), The structure of the Atlantic-Mediterranean transition zone from the Alboran Sea to the Horseshoe Abyssal Plain (Iberia-Africa plate boundary), Mar. Geol., 243, 97–119. Kennett, B. L. N., M. S. Sambridge, and P. R. Williamson (1988), Subspace methods for large scale inverse problems involving multiple parameter classes, Geophys. J. Int., 94, 237–247. Kennett, B. L. N., E. R. Engdhal, and R. Buland (1995), Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 126, 555–578. Koch, M. (1985), A numerical study on the determination of the 3-D structure of the lithosphere by linear and non-linear inversion of teleseismic travel times, Geophys. J. R. Astron. Soc., 80, 73–93. Leveque, J.-J., and F. Masson (1999), From ACH tomographic models to absolute velocity models, Geophys. J. Int., 137, 621–629. Leveque, J. J., L. Rivern, and G. Wittlinger (1993), On the use of the checker-board test to assess the resolution of tomographic inversions, Geophys. J. Int., 115, 313–318. Lindquist, K. G., K. Engle, D. Stahlke, and E. Price (2004), Global Topography and Bathymetry Grid Improves Research Efforts, Eos Trans. AGU, 85(19), 186. Lonergan, L., and N. White (1997), Origin of the Betic-Rif mountain belt, Tectonics, 16, 504–522. McKenzie D., J. Jackson, and K. Priestley (2005), Thermal structure of oceanic and continental lithosphere, Earth Plan. Sci. Lett., 233, 337–349. Merle, R., U. Schärer, J. Girardeau, and G. Cornen (2006), Cretaceous seamounts along the continent-ocean transition of the Ibeian margin: U-Pb ages and Pb-Sr-Hf isotopes, Geochem. Cosmochim. Acta, 70, 4950–4976. Miranda R., V. Valadares, P. Terrinha, J. Mata, M. do Rosario Azevedo, M. Gaspar, J. C. Kulberg, and C. Ribeiro (2009), Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian Margin, Cretaceous Res., 30, 575–586. Montuori, C., G. B. Cimini, and P. Favali (2007), Teleseismic tomography of the southern Tyrrhenian subduction zone: New results from seafloor and land recordings. J. Geophys. Res., 112, B03311, doi:10.1029/ 2005JB004114. Nolet, G. (2008), A Breviary of Seismic Tomography: Imaging the Interior of the Earth and the Sun. Cambridge University Press, Cambridge, 344 pp., ISBN 978-0-521-88244-6. Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/2002JB001757. Platt, J. P., and R. L. M. Vissers (1989), Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and the Gibraltar arc, Geology, 17, 540–543. Platt, J. P. (1998), Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean, Tectonics, 17, 5, 671–689. Polyak, B. G., et al. (1996), Heat flow in the Alboran Sea, western Mediterranean. Tectonophys. 263, 191–218. Ranalli, G. (1996), Seismic tomography and mineral physics, in Seismic Modelling of the Earth Structure, edited by E. Boschi, G. Ekström, and A. Morelli., pp. 443–459, Ist. Naz. di Geofis., Rome. Rawlinson, N., A. M. Reading, and B. L. N. Kennett (2006), Lithospheric structure of Tasmania from a novel form of teleseismic tomography, J. Geophys. Res., 111, B02301, doi:10.1029/2005JB003803. Rovere M., C. R. Ranero, R. Sartori, L. Torelli, and N. Zitellini (2004), Seismic images and magnetic signature of the Late Jurassic to Early Cretaceous Africa-Eurasia plate boundary off SW Iberia, Geophys. Int., 158, doi:10.1111/j.1365-246X.2004.02339.x. Royden, L. H. (1993), Evolution of retreating subduction boundaries formed during continental collision, Tectonics, 12, 629–638. Sallarès, V., A. Gailler, M.-A. Gutscher, D. Graindorge, R. Bartolomé, E. Gràcia, J. Díaz, J. J. Dañobeitia, and N. Zitellini (2011), Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin), Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2011.09.003. Sartori, R., L. Torelli, N. Zitellini, D. Peis, and E. Lodolo (1994), Eastern segment of the Azores–Gibraltar line (central–eastern Atlantic): an oceanic plate boundary with diffuse compressional deformation, Geology, 22, 555–558. Seber, D.,M. Barazangi, A. Ibenbrahim, and A. Demnati (1996), Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif- Betic mountains, Nature, 379, 785–790. Serrano, I., D. Zhao, and J. Morales (2003), Seismic tomography from local crustal earthquakes beneath eastern Rif mountains of Morocco, Tectonophys., 367, 187–201. Serpelloni, E., G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. Gasperini (2007), Kinematics of theWestern Africa-Eurasia plate boundary from fochal mechanisms and GPS data, Geophys. J. Int., 169, 1180–1200, doi:10.1111/j.1365-246X.2007.03367.x. Sethian, J. A., and A. M. Popovici (1999), 3-D traveltime computation using the fast marching method, Geophysics, 64, 516–523. Shomali, Z. H., F. Keshvari, J. Hassanzadeh, and N. Mirzaei (2011), Lithospheric structure beneath the Zagros collision zone resolved by non-linear teleseismic tomography, Geophys. J. Int., 187, 394–406, doi:10.1111/j.1365-246X.2011.05150.x. Sibuet, J.-C., S. P. Srivastava, and W. Spakman (2004), Pyrenean orogeny and plate kinematics, J. Geophys. Res., 109, B08104, doi:10.1029/ 2003JB002514. Spakman W., and M. J. R. Wortel (2004), A tomographic view on Western Mediterranean Geodynamics, in The Transmed Atlas, the Mediterranean region from crust to mantle, edited by W. Cavazza, F. M. Roure, W. Spakman, G. M. Stampfli, P. A. Ziegler eds., Springer, 31–52. Sperner, B., F. Lorenz, K. Bonjer, S. Hettel, B Müller, and F.Wenzel (2001), Slab break-off or abrupt cut or gradual detachment? New insights from Vrancea Region (SE Carpathians, Romania)., Terra Nova, 13/3, 172–179. Stich, D., C. J. Ammon, and J. Morales (2003), Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region, J. Geophys. Res., 108(B3), 2148, doi:10.1029/2002JB002057. Stich, D., F. Mancilla, and J. Morales (2005), Crust-mantle coupling in the Gulf of Cadiz (SW-Iberia), Geophys. Res. Lett., 32, L13306, doi:10.1029/ 2005GL023098. Stich, D., E. Serpelloni, F. Mancilla, and J. Morales (2006), Kinematics of the Iberia-Maghreb plate contact from seismic moment tensors and GPS observations, Tectonophysics, 426, 295–317. Tilmann, F. J., H. M. Benz, K. F. Priestley, and P. G. Okubo (2001), P-wave velocity structure of the uppermost mantle beneath Hawaii from travel time tomography, Geophys. J. Int., 146, 594–606. Tornè, M., M. Fernàndez, M. C. Comas, and J. I. Soto (2000), Lithospheric structure beneath the Alboran Basin: results from 3D gravity modeling and tectonic relevance, J. Geophys. Res., 105(B2), 3209–3228. Turner, S. P., J. P. Platt, R. M. M. George, S. P. Kelley, D. G. Pearson, and G. M. Nowell (1999), Magmatism associated with orogenic collapse of the Betic–Alboran Domain, SE Spain, J. Petrol., 40, 1011–1036. VanDecar, J. C., and R. S. Crosson (1990), Determination of teleseismic relative phase arrival times using multi-channel cross correlation and least squares, Bull. Seis Soc. Am., 80, 150–169. Wessel, P., and W. H. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(41), 441. Zeck, H. P. (1996), Betic-Rif orogeny: Subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics, Tectonophys., 254, 1–16. Zeyen, H., P. Ayarza, M. Fernàndez, and A. Rimi (2005), Lithospheric structure under the western African-European plate boundary: A transect across the Atlas Mountains and the Gulf of Cadiz, Tectonics, 24, TC2001, doi:10.1029/2004TC001639. Zitellini, N., et al. (2009), The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar, Earth Planet. Sci. Lett., 280, 13–50, doi:10.1016/j.epsl.2008.12.005.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorMonna, S.en
dc.contributor.authorCimini, G. B.en
dc.contributor.authorMontuori, C.en
dc.contributor.authorMatias, L.en
dc.contributor.authorGeissler, W. H.en
dc.contributor.authorFavali, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCentro de Geofísica, Universidade de Lisboa, Lisbon, Portugal.en
dc.contributor.departmentAlfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptInstituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Portugal-
crisitem.author.deptAlfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-9241-1322-
crisitem.author.orcid0000-0003-2196-1620-
crisitem.author.orcid0000-0001-8079-8451-
crisitem.author.orcid0000-0002-8086-4874-
crisitem.author.orcid0000-0002-0810-0263-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2012CadizJGR.pdf5.48 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

14
checked on Feb 7, 2021

Page view(s) 20

456
checked on Apr 24, 2024

Download(s) 50

81
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric