Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8667
DC FieldValueLanguage
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDe Ritis, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallLongo, M.; Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentinaen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-04-23T13:33:07Zen
dc.date.available2013-04-23T13:33:07Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8667en
dc.description.abstractGeomorphometric parameters (slope, aspect, valley depth, and areal density of cones) derived from a moderate resolution digital elevation model with a grid spacing of 100 m are used in an attempt to interpret the tectonic/structural features related to surface deformation in the Auca Mahuida volcanic terrain (Neuquén Basin, Argentina). The Auca Mahuida (2.03–0.88 Ma) is the southernmost volcanic field of the Payenia volcanic province, in the Andean foreland. The foreland is subjected to an E–W compression related to the eastward migration of the N–S striking thrust front of the Andes. The geomorphometric analysis indicates that the Auca Mahuida consists of a basal, E–W elongated lava field with monogenic vents and a summit, polygenic, also E–W elongated, cone. A N100◦E striking fault controls the southern flank of the field, which is also affected by scarps related to erosional and gravity-controlled processes. The drainage network shows a pseudo-radial pattern around the summit cone, and the Auca Mahuida’s deepest valley is structurally controlled by a NNW–SSE striking fault affecting the sedimentary basement. The volcanic field lies on a NE to E dipping substratum. The areal distribution of the monogenic cones is consistent with ascent of magmas along E–W striking fractures, and with elastic models of a pressurized hole (magma chamber) subjected to an E–W compression. At Auca Mahuida, the ascent of melts from the mantle is controlled, in the overriding crust, by tectonic structures formed in response to the E–W compression of the Andes.en
dc.description.sponsorshipINGV abd YPFen
dc.language.isoEnglishen
dc.publisher.nameTaylor & Francis Groupen
dc.relation.ispartofInternational Journal of Geographical Information Scienceen
dc.relation.ispartofseries/27 (2013)en
dc.subjectgeomorphologyen
dc.subjectvolcanismen
dc.subjecttectonicsen
dc.titleTerrain characterization and structural control of the Auca Mahuida volcanism (Neuquén Basin, Argentina)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1469-1480en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.identifier.doi10.1080/13658816.2012.741241en
dc.relation.referencesBermúdez, A., Delpino, F.D., and Saal, F.A., 1993. Los Basaltos de retroarco extraandinos. In: V.A. Ramos, ed. Geología y recursos naturales de Mendoza: Buenos Aires. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, Relatorio, 161–172. Cobbold, P.R. and Rossello, E.A., 2003. Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Marine and petroleum. Geology, 20, 429–443. Conrad, O., 2006. SAGA – program structure and current state of implementation. In: J. Böhner, K.R. McCloy, and J. Strobl, eds. SAGA – analysis and modelling applications. Göttinger Geographische Abhandlungen, 115, 39–52. Cristallini, E.O., et al., 2006. Synrift geometry of the Neuquén Basin in the northeastern Neuquén Province, Argentina. In: S.M. En Kay and V.A. y Ramos, eds. Evolution of the Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35◦–39◦latitude). Geological Society of America Special Paper, 407, 147–161. Galland, O., et al., 2007. Rise and emplacement of magma during horizontal shortening of the brittle crust: insights from experimental modeling. Journal of Geophysical Research, 112, B06402. doi:10.1029/2006JB004604 Gudnason, J., et al., 2012. Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. Journal of South American Earth Sciences, 37, 191–201. Guzman, C.G. and Cristallini, E.O., 2009. Contemporary stress orientations from borehole breakout analysis in the southernmost flat-slab boundary Andean retroarc (32.4◦ and 33.4◦S). Journal of Geophysical Research, 114, B02406. doi:10.1029/2007JB005505 Guzman, C., Cristallini, E., and Bottesi, G., 2007. Contemporary stress orientations in the Andean retroarc between 34◦S and 39◦S from borehole breakout analysis. Tectonics, 26, TC3016. doi:10.1029/2006TC001958 Hengl, T., 2009. A practical guide to geostatistical mapping. 2nd ed. Amsterdam: University of Amsterdam. Kay, S.M., Burns, M., and Copeland, P., 2006, Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: S.M. Kay and V.A. Ramos, eds., Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39◦S). Geological Society of America, Special Paper, 407, 19–60. Khazaradze, G. and Klotz, J., 2003. Short- and long-term effects of GPS measured crustal deformation rates along the south-central Andes. Journal of Geophysical Research, 108 (B6), 2289. doi:10.1029/2002JB001879 Llambías, E.J., et al., 2010. El volcanismo Cuarternario en el retroarco de Payenia: una revision. Revista de la Asociación Geológica Argentina, 67 (2), 278–300. Maune, D.F., Maitra, J.B., and McKay, E.J., 2007. Accuracy standards and guidelines. In: digital elevation model technologies and applications: the DEM users manual. American Society for Photogrammetry and Remote Sensing, Bethesda, 61–82. Mazzarini, F., et al., 2008. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen volcanic complex on the central Andes foreland (Mendoza, Argentina). Geochemestry Geophysics Geosystystems, 9, Q09002. doi:10.1029/2008GC002037 Messager, G., et al., 2010. Geomorphic evidence for Plio-Quaternary compression in the andean foothills of the southern Neuquén Basin, Argentina. Tectonics, 29 (TC4003), doi:10.1029/2009TC002609 Mosquera, A. and Ramos, V.A., 2006. Intraplate deformation in the Neuquén Basin. In: S.M. Kay and V.A. Ramos, eds. Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35◦–39◦S latitude). Geological Society of America Special Paper, 407, 97–124. Muller, O.H. and Pollard, D.D., 1977. The stress state near Spanish Peaks, Colorado, determined from a dike pattern. Pure and Applied Geophysics, 115, 69–86. Nakamura, K., 1977. Volcanoes as possible indicators of tectonic stress orientation – Principle and proposal. Journal of Volcanology and Geothermal Research, 2, 1–16. Rabus, B., et al., 2003. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241–262. doi:10.1016/S0924-2716(02)00124-7 Ramos, V.A. and Folguera, A., 2010. Payenia volcanic province in the Southern Andes: an appraisal of an exceptional Quaternary tectonic setting. Journal of Volcanology and Geothermal Research, 201, 53–64. doi:10.1016/j.jvolgeores.2010.09.008 Ramos, V.A. and Kay, S.M., 2006, Overview over the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35◦–39◦ S latitude). In: S.M. Kay and V.A. Ramos, eds. Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35◦–39◦ S latitude). Geological Society of America Special Paper, 407, 1–18. Rossello, E.A., et al., 2002, Auca Mahuida (Neuquén basin, Argentina): A Quaternary shield volcano on a hydrocarbon-producing substrate. 6th International Symposium on Andean Geodynamics (ISAG 2002), Extended Abstracts, Barcelona, Univ. de Barcelona, Inst. Geol. y Minero de España, 549–552. Takada, A., 1994. The influence of regional stress and magnetic input on styles of monogenetic and polygenetic volcanism. Journal of Geophysical Research, 99 (B7). doi:10.1029/94JB00494 Vergani, G.D., et al., 1995, Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: A.J. Tankard, S.R. Suarez and J.Welsink, eds. Petroleum basins of South America. AAPG Memoir, 62, 383–402. Witte, J., et al., 2012. Fracture evolution in oil-producing sills of the Rio Grande Valley, northern Neuquen Basin, Argentina. AAPG Bulletin, 96, 1253–1277.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1365-8816en
dc.relation.eissn1365-8824en
dc.contributor.authorVentura, G.en
dc.contributor.authorDe Ritis, R.en
dc.contributor.authorLongo, M.en
dc.contributor.authorChiappini, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentFacultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentinaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0003-1771-0132-
crisitem.author.orcid0000-0002-9465-2653-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ventura et al 2012 IJGIS.pdfpdf electronic reprint1.47 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s) 50

380
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric