Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8634
DC FieldValueLanguage
dc.contributor.authorallHong, W.- L..; Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10699, Taiwanen
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallYang, T. F.; Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10699, Taiwanen
dc.contributor.authorallChang, P.- Y.; Institute of Applied Geosciences, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung City 202, Taiwanen
dc.date.accessioned2013-04-16T13:17:27Zen
dc.date.available2013-04-16T13:17:27Zen
dc.date.issued2013-03-25en
dc.identifier.urihttp://hdl.handle.net/2122/8634en
dc.description.abstractMud volcanoes (MVs) are considered important methane (CH4) sources for the atmosphere; gas is not only released from macro-seepage, i.e., from craters and visible gas bubbling manifestations, but also from invisible and pervasive exhalation from the ground, named miniseepage. CH4 flux related to miniseepage was measured only in a few MVs, in Azerbaijan, Italy, Japan, Romania and Taiwan. This study examines in detail the flux data acquired in 5 MVs and 1 ‘‘dry’’ seep in SW Taiwan, and further compares with other 23 MVs in Italy, Romania and Azerbaijan. Miniseepage from the six manifestations in SW Taiwan MVs and seeps annually contribute at least 110 tons of methane directly to the atmosphere, and represents about 80% of total degassing during a quiescent period. Combining miniseepage flux and geo-electrical data from the Wu-shan-ding MV revealed a possible link between gas flux and electrical resistivity of the vadose zone. This suggests that unsaturated subsoil is a preferential zone for shallow gas accumulation and seepage to the atmosphere. Besides, miniseepage flux in Chu-huo everlasting fire decreases by increasing the distance from the main gas channeling zone and molecular fractionation (methane/ethane ratio) is higher for lower flux seepage, consistently with what observed in other MVs worldwide. Measurements from Azerbaijan, Italy, Romania, and Taiwan converge to indicate that miniseepage is directly proportional to the vent output and it is a significant component of the total methane budget of a MV. A miniseepage vs. macro-seepage flux equation has been statistically assessed and it can be used to estimate theoretically at least the order of magnitude of the flux of miniseepage for MVs of which only the flux from vents was evaluated, or will be evaluated in future. This will allow a more complete and objective quantification of gas emission in MVs, thus also refining the estimate of the global methane emission from geological sources.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of Asian earth sciencesen
dc.relation.ispartofseries/ 65 (2013)en
dc.subjectMud volcanoen
dc.subjectMiniseepageen
dc.subjectMacro-seepageen
dc.subjectGlobal methane emissionen
dc.titleMethane flux from miniseepage in mud volcanoes of SW Taiwan: Comparison with the data from Italy, Romania, and Azerbaijanen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3–12en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.jseaes.2012.02.005en
dc.relation.referencesBrown, A., 2000. Evaluation of possible gas microseepage mechanisms. American Association of Petroleum Geologists Bulletin 84, 1775–1789. Cardellini, C., Chiodini, G., Frondini, F., Granieri, D., Lewicki, J., Peruzzi, L., 2003. Accumulation chamber measurements of methane fluxes: application to volcanic-geothermal areas and landfills. Applied Geochemistry 18, 45–54. Chang, P.Y., Yang, T.F., Chi, L., Hong, W.L., 2010. An observation of the electrical resistivity variation before and after the Pingtung Earthquake in the Wushanting Mud Volcano Area in Southwestern Taiwan. Journal of Environmental and Engineering Geophysics 15, 213–219. Chao, H.-C., You, C.-F., Sun, C.-H., 2010. Gases in Taiwan mud volcanoes: chemical composition, methane carbon isotopes, and gas fluxes. Applied Geochemistry 25, 428–436. Cheng, C.Y., Heinicke, J., Fu, C.C., Yang, T.F., Tong, L.T., 2008. Emission flux of CO2 through an active fault zone in SW Taiwan. Eos Transactions American Geophysical Union, 89(53), Fall Meeting Supplementary, Abstract U41B-0015. Chiu, J.K., Tseng, W.H., Liu, C.S., 2006. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences 17, 703–722. Chuang, P.C., Yang, T.F., Lin, S., Lee, H.F., Lan, T.F.F., Hong, W.L., Liu, C.S., Chen, J.C., Wang, Y., 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences 17, 903–920. Chuang, P.C., Yang, T.F., Hong, W.L., Lin, S., Sun, C.H., Lin, A.T.S., Chen, J.C., Wang, Y., Chung, S.H., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids 10, 497–510. Cramer, S.D., 1984. Solubility of methane in brines from 0 to 300 C. Industrial and Engineering Chemistry Process Design and Development 23 (3), 533–538. Dimitrov, L.I., 2002. Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59, 49–76. EMEP/EEA, 2009. EMEP/EEA air pollutant emission inventory guidebook – 2009. Technical guidance to prepare national emission inventories. European Environment Agency Technical Report No 6/2009. European Environment Agency, Copenhagen. doi: http://dx.doi.org/10.2800/23924. Etiope, G., Klusman, R., 2010. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global and Planetary Change 72, 265–274. Etiope, G., Milkov, A.V., 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environmental Geology 46, 997–1002. Etiope, G., Caracausi, A., Favara, R., Italiano, F., Baciu, C., 2002. Methane emission from the mud volcanoes of Sicily (Italy). Geophysical Research Letters 29 (8), 1215. http://dx.doi.org/10.1029/2001GL014340. Etiope, G., Baciu, C., Caracausi, A., Italiano, F., Cosma, C., 2004a. Gas flux to the atmosphere from mud volcanoes in eastern Romania. Terra Nova 16, 179–184. Etiope, G., Feyzullayev, A., Baciu, C.L., Milkov, A.V., 2004b. Methane emission from mud volcanoes in eastern Azerbaijan. Geology 32, 465–468. Etiope, G., Guerra, M., Raschi, A., 2005. Carbon Dioxide and Radon Geohazards over a Gas-bearing Fault in the Siena Graben (Central Italy). Terrestrial, Atmospheric and Oceanic Sciences 16, 885–896. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007. Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophysical Research Letters 34, L14303. Etiope, G., Milkov, A.V., Derbyshire, E., 2008. Did geologic emissions of methane play any role in quaternary climate change? Global and Planetary Change 61, 79–88. Etiope, G., Feyzullayev, A., Baciu, C.L., 2009. Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Marine Petroleum Geology 26, 333–344. Etiope, G., Nakada, R., Tanaka, K., Yoshida, N., 2011. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4-CO2 fluxes. Applied Geochemistry 26 (3), 348–359. Guliyev, I., Feizullayev, A., 1997. All about Mud Volcanoes. Geology Institute, Azerbaijan Academy of Sciences. Hernandez, P., Perez, N., Salazar, J., Nakai, S., Notsu, K., Wakita, H., 1998. Diffuse emission of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophysical Research Letters, 25. Howell, D., 2002. Statistical Methods for Psychology. Duxbury Press, Belmont, CA. Huang, C.Y., Wu, W.Y., Chang, C.P., Tsao, S., Yuan, P.B., Lin, C.W., Xia, K.Y., 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281, 31–51. Huang, C.Y., Yuan, P.B., Tsao, S.J., 2006. Temporal and spatial records of active arccontinent collision in Taiwan: a synthesis. Geological Society of America Bulletin 118, 274–288. Klusman, R., Leopold, M., LeRoy, M., 2000. Seasonal variation in methane fluxes from sedimentary basins to the atmosphere: results from chamber measurements and modeling of transport from deep sources. Journal of Geophysical Research-Atmospheres 105 (D20), 24661–24670. Lan, T.F., Yang, T.F., Lee, H.F., Chen, Y.G., Chen, C.H., Song, S.R., Tsao, S., 2007. Compositions and flux of soil gas in Liu-Huang-Ku hydrothermal area, northern Taiwan. Journal of Volcanology and Geothermal Research 165, 32–45. Lee, H.F., Yang, T.F., Lan, T.F., Song, S.R., Tsao, S., 2005. Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. Terrestrial Atmospheric and Oceanic Sciences 16, 843–864. Lin, S., Hsieh, W.C., Lim, Y.C., Yang, T.F., Liu, C.S., Wang, Y., 2006. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences 17, 883–902. Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.J., Wu, M.S., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Marine Geology 255, 186–203. Livingston, G., Hutchinson, G., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P., Harriss, R. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell Scientific Publications, London, pp. 14–51. Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29–42. Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., Brusset, S., 2001. Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics 333, 293–318. Norman, J.M., Kucharik, C.J., Gower, S.T., Baldocchi, D.D., Crill, P.M., Rayment, M., Savage, K., Striegl, R.G., 1997. A comparison of six methods for measuring soilsurface carbon dioxide fluxes. Journal of Geophysical Research-Atmospheres 102, 28771–28777. Spulber, L., Etiope, G., Baciu, C., Maloss, C., Vlad, S.N., 2010. Methane emission from natural gas seeps and mud volcanoes in Transylvania (Romania). Geofluids 10 (4), 463–475. Thielemann, T., Lucke, A., Schleser, G.H., Littke, R., 2000. Methane exchange between coal-bearing basins and the: the Ruhr Basin and the Lower Rhine Embayment, Germany. Organic Geochemistry 31, 1387–1408. Wilks, D., 2006. Statistical Methods in the Atmospheric Sciences. Academic Press. Yang, T.F., Chou, C.Y., Chen, C-H., Chyi, L.L., Jiang, J.H., 2003. Exhalation of radon and its carrier gases in SW Taiwan. Radiation Measurements 36, 425–429. Yang, T.F., Yeh, G.H., Fu, C.C., Wang, C.C., Lan, T.F., Lee, H.F., Chen, C.H., Walia, V., Sung, Q.C., 2004. Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology 46, 1003–1011. Yang, T.F., Chuang, P.C., Lin, S., Chen, J.C., Wang, Y., Chung, S.H., 2006. Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terrestrial Atmospheric and Oceanic Sciences 17, 933–950.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1367-9120en
dc.relation.eissn1878-5786en
dc.contributor.authorHong, W.- L..en
dc.contributor.authorEtiope, G.en
dc.contributor.authorYang, T. F.en
dc.contributor.authorChang, P.- Y.en
dc.contributor.departmentDepartment of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10699, Taiwanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10699, Taiwanen
dc.contributor.departmentInstitute of Applied Geosciences, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung City 202, Taiwanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10699, Taiwan-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10699, Taiwan-
crisitem.author.deptInstitute of Applied Geosciences, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung City 202, Taiwan-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Hong-Etiope-Yang-Chang-2013-JAES.pdf1.66 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

17
checked on Feb 10, 2021

Page view(s)

132
checked on Apr 24, 2024

Download(s)

24
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric