Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8615
DC FieldValueLanguage
dc.contributor.authorallQin, K.; China University of Mining and Technology, College of Geosciences and Surveying Engineering, Beijing, Chinaen
dc.contributor.authorallWu, L. X.; China University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou, Chinaen
dc.contributor.authorallDe Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCianchini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-04-12T09:59:37Zen
dc.date.available2013-04-12T09:59:37Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8615en
dc.description.abstractIn the 1980's, from an analysis of satellite images, Russian scientists reported on a short-term thermal infrared radiation enhancement that occurred before some medium-to-large earthquakes in central Asia [Gorny et al. 1988]. Since then, many researchers have been studying earthquake thermal anomalies with satellite remote sensing data [Qiang et al. 1991, Tronin 1996, Tramutoli et al. 2001, Ouzounov and Freund 2004, Saraf and Choudhury 2004, Aliano et al. 2008, Blackett et al. 2011]. Recently, abnormal surface latent heat flux [Dey and Singh 2003, Cervone et al. 2005, Qin et al. 2009, Qin et al. 2011, Qin et al. 2012], outgoing long-wave radiation [Ouzounov et al. 2007] and microwave radiation [Takashi and Tadashi 2010] have also been shown to precede earthquakes. To investigate the possible physical mechanisms of such satellite thermal anomalies, some studies conducted a series of detecting experiments on rock loaded to fracturing [Wu et al. 2000, Freund 2002, Wu et al. 2002, Wu et al. 2006a, Wu et al. 2006b, Freund et al. 2007], and some hypotheses have been proposed. These have included: leaking of pore-gas, and hence the resulting greenhouse effect [Qiang et al. 1995]; activating and recombining of p-holes during rock deformation [Freund 2002]; release of latent heat due to near-surface air ionization [Pulinets et al. 2006], and stress-induced thermal effects due to friction and fluids [Wu and Liu 2009]. According to the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology), two major earthquakes with almost the same large magnitudes struck northern Italy, on the Po Plain in the Emilia Region. The first hit on May 20, 2012, at 02:03 UTC, with ML 5.9 (44.89 °N, 11.23 °E; 6 km in depth), and the second on May 29, 2012, at 07:00 UTC, with ML 5.8 (44.85 °N, 11.09 °E; 10 km in depth). These caused a total of 27 deaths and widespread damage. In this study, the long-term temperature data from both satellite and ground (with greater emphasis on the satellite data) have been used to determine whether there were thermal anomalies associated with this Emilia 2012 seismic sequence. In particular, the next section will be dedicated to describing both the data and the method of analysis. In Section 3, we provide the more significant results, which we discuss in Section 4, together with the main conclusions. We acknowledge that this work cannot be exhaustive, as it will require more data and analyses. However, although further studies will be welcome, we are confident that we have done the best with the data at our disposal.en
dc.language.isoEnglishen
dc.publisher.nameIstituto Nazionale di Geofisica e Vulcanologiaen
dc.relation.ispartofAnnals of geophysicsen
dc.relation.ispartofseries4 / 55 (2012)en
dc.subjectearthquake eventen
dc.subjectnumerical methoden
dc.subjectsurface temperatureen
dc.subjectEmilia-Romagna, Italyen
dc.subjectEmiliaen
dc.titlePreliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber823-828en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methodsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.4401/ag-6123en
dc.relation.referencesAliano, C., R. Corrado, C. Filizzola, N. Genzano, N. Pergola and V. Tramutoli (2008). Robust TIR satellite techniques for monitoring earthquake active regions: limits, main achievements and perspectives, Annals of Geophysics, 51 (1), 303-318. Blackett, M., M.J. Wooster and B.D. Malamud (2011). Exploring land surface temperature earthquake precursors: a focus on the Gujarat (India) earthquake of 2001, Geophys. Res. Lett., 38, L15303. Bonfanti, P., N. Genzano, J. Heinicke, F. Italiano, G. Martinelli, N. Pergola, L. Telesca and V. Tramutoli (2012). Evidence of CO2-gas emission variations in the central Apennines (Italy) during the L'Aquila seismic sequence (March-April 2009), B. Geofis. Teor. Appl., 53, 147-168. Cianchini, G., A. De Santis, D.R. Barraclough, L.X. Wu and K. Qin (2012). Magnetic transfer function entropy and the 2009 Mw = 6.3 L'Aquila earthquake (central Italy), Nonlinear Proc. Geoph., 19, 401-409. Cervone, G., R.P. Singh, M. Kafatos and C. Yu (2005). Wavelet maxima curves of surface latent heat flux anomalies associated with Indian earthquakes, Nat. Hazards Earth Sys. Sci., 5, 87-99. De Santis, A. (2009). Geosystemics, In: Proceedings of the 3rd IASME/WSEAS International Conference on Geology and Seismology (GES'09), Plenary Lecture. De Santis, A., G. Cianchini, E. Qamili and A. Frepoli (2010). The 2009 L'Aquila (central Italy) seismic sequence as a chaotic process, Tectonophysics, 496, 44-52. De Santis, A., G. Cianchini, L. Beranzoli, P. Favali and E. Boschi (2011). The Gutenberg-Richter law and entropy of earthquakes: two case studies in central Italy, B. Seismol. Soc. Am., 101, 1386-1395. Dey, S., and R.P. Singh (2003). Surface latent heat flux as an earthquake precursor, Nat. Hazards Earth Syst. Sci., 3, 749-755. Freund, F.T. (2002). Charge generation and propagation in igneous rocks, J Geodyn., 33, 543-570. Freund, F.T., A. Takeuchi, B.W.S. Lau, A. Al-Manaseer, C.C. Fu, N.A. Bryant and D. Ouzounov (2007). Stimulated infrared emission from rocks assessing a stress indicator, eEarth, 2, 7-16. Gorny, V.I., A.G. Sal'man, A.A. Tronin and B.V. Shilin (1988). Outgoing terrestrial infrared radiation as an indicator of seismic activity, Akademiia Nauk SSSR, Doklady (ISSN 0002-3264), 301 (1), 67-69 (in Russian). Ouzounov, D., and F.T. Freund (2004). Mid-infrared emission prior to strong earthquakes analyzed remote sensing data, Adv. Space Res., 33, 268-273. Ouzounov, D., D.F. Liu, C.L. Kang and P. Taylor (2007). The outgoing long-wave radiation variability prior to the major earthquake by analyzing IR satellite data, Tectonophysics, 421, 211-220. Pulinets, S., D. Ozounov, A.V. Karelin, K.A. Boyarchuk and L.A. Pokhmelnykh (2006). The physical nature of thermal anomalies observed before strong earthquakes, Phys. Chem. Earth., 31, 143-153. Qiang, Z.J. X.D. Xu and C.G. Dian (1991). Thermal infrared anomaly precursor of impending earthquakes, Chinese Sci. Bull., 36, 319-323. Qiang, Z.J., L.C. Kong, M.H. Guo and Y.P. Wang (1995). Laboratory research on mechanism of satellite infrared anomaly, Chinese Sci. Bull., 16, 1403-1404. Qin, K., G.M. Guo and L.X. Wu (2009). Surface latent heat flux anomalies preceding inland earthquakes in China, Earthquake Science, 22 (5), 555-562. Qin, K., L.X. Wu, A. De Santis and H. Wang (2011). Surface latent heat flux anomalies before the MS 7.1 New Zealand earthquake 2010, Chinese Sci. Bull., 56, 3273-3280. Qin, K., L.X. Wu, A. De Santis, J. Meng, W.Y. Ma and G. Cianchini (2012). Quasi-synchronous multi-parameter anomalies associated with the 2010-2011 New Zealand earthquake sequence, Nat. Hazards Earth Syst. Sci., 12, 1059-1072. Rienecker, M.M., et al. (2011). MERRA - NASA's Modern- Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624-3648. Saraf, A.K., and S. Choudhury (2004). Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003, Int. J. Remote Sens., 26, 2705-2713. Takashi, M., and T. Tadashi (2010). Detection algorithm of earthquake-related rock failures from satelliteborne microwave radiometer data, IEEE T. Geosci. Remote, 48, 1768-1776. Tramutoli, V., G.D. Bello, N. Pergola and S. Piscitelli (2001). Robust satellite techniques for remote sensing of seismically active areas, Annali di Geofisica, 44 (2), 295-312. Tronin, A.A (1996). Satellite thermal survey-a new tool for the study of seismoactive regions, Int. J. Remote Sens., 41, 1439-1455. Wu, L.X., C.Y. Cui, N.G. Geng and J.Z. Wang (2000). Remote sensing rock mechanics (RSRM) and associated experimental studies, Int. J. Rock Mech. Min., 37, 879-888. Wu, L.X., S.J. Liu, Y.H. Wu and Y.Q. Li (2002). Changes in IR with rock deformation, Int. J. Rock Mech. Min., 39, 825-831. Wu, L.X., S.J. Liu and Y.H. Wu (2006a). Precursors for rock fracturing and failure - part I: IRR image abnormalities, Int. J. Rock Mech. Min., 43, 473-482. Wu, L.X., S.J. Liu and Y.H. Wu (2006b). Precursors for rock fracturing and failure-part II:IRR T-curve abnormalities, Int. J. Rock Mech. Min., 43, 483-493. Wu, L.X., and S.J. Liu (2009). Chapter 34: Remote Sensing Rock Mechanics and Earthquake Infrared Anomalies, In: G. Jedlovec (ed.), Advances in Geosciences & Remote Sensing, Sweden, In-Teh, 709-741. Wu, L.X., K. Qin and S.J. Liu (2012). GEOSS-based thermal parameters analysis for earthquake anomaly recognition, In: Proceedings of the IEEE, 99, 1-17; doi:10.1109/JPROC. 2012.2184789.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorQin, K.en
dc.contributor.authorWu, L. X.en
dc.contributor.authorDe Santis, A.en
dc.contributor.authorCianchini, G.en
dc.contributor.departmentChina University of Mining and Technology, College of Geosciences and Surveying Engineering, Beijing, Chinaen
dc.contributor.departmentChina University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou, Chinaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptChina University of Mining & Technology (Beijing)-
crisitem.author.deptChina University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou, China-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-3941-656X-
crisitem.author.orcid0000-0003-2832-0068-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Show simple item record

WEB OF SCIENCETM
Citations 50

23
checked on Feb 10, 2021

Page view(s) 10

456
checked on Apr 17, 2024

Download(s) 10

800
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric