Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8598
DC FieldValueLanguage
dc.contributor.authorallDe Michelis, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallConsolini, G.; INAF – Istituto di Astrofisica e Planetologia Spaziali, 00133 Roma, Italyen
dc.contributor.authorallTozzi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-04-05T10:54:33Zen
dc.date.available2013-04-05T10:54:33Zen
dc.date.issued2012-11en
dc.identifier.urihttp://hdl.handle.net/2122/8598en
dc.description.abstractComplexity and multi-scale are very common properties of several geomagnetic time series. On the other hand, it is amply demonstrated that scaling properties of geomagnetic time series show significant changes depending on the geomagnetic activity level. Here, we study the multiscale features of some large geomagnetic storms by applying the empirical mode decomposition technique. This method, which is alternative to traditional data analysis and is designed specifically for analyzing nonlinear and nonstationary data, is applied to long time series of Sym-H index relative to periods including large geomagnetic disturbances. The spectral and scaling features of the intrinsic mode functions(IMFs) into which Sym-H time series can be decomposed, as well as those of the Sym-H time series itself, are studied considering different geomagnetic activity levels. The results suggest an increase of dynamical complexity and multi-scale properties for intermediate geomagnetic activity levels.en
dc.language.isoEnglishen
dc.publisher.nameCopernicus Publicationsen
dc.relation.ispartofNonlinear Processes in Geophysicsen
dc.relation.ispartofseries6 / 19 (2012)en
dc.subjectgeomagnetic stormsen
dc.subjectEmpirical Mode Decompositionen
dc.subjectmagnetospheric dynamicsen
dc.titleOn the multi-scale nature of large geomagnetic storms: an empirical mode decomposition analysisen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber667-673en
dc.subject.INGV01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic stormsen
dc.subject.INGV01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physicsen
dc.subject.INGV05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interactionen
dc.identifier.doi10.5194/npg-19-667-2012en
dc.relation.referencesChang, T., Tam, S. W. Y., Wu, C. C., and Consolini, G.: Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas, Space Sci. Rev., 107, 425– 445, 2003. Chapman, S. C. andWatkins, N.W.: Avalanching and self organised criticality: a paradigm for magnetospheric dynamics?, Space Sci. Rev., 95, 293–307, 2001. Consolini, G. and Chang, T.: Magnetic field topology and criticality in geotail dynamics: Relevance to substorm phenomena, Space Sci. Rev., 95, 309–321, 2001. Consolini, G., De Michelis, P., and Tozzi, R.: On the earth’s magnetospheric dynamics: Nonequilibrium evolution and the fluctuation theorem, J. Geophys. Res., 113, A08222, doi:10.1029/2008JA013074, 2008. de Groot, S. R. and Mazur, P.: Non-equilibrium thermodynamics, Dover Publications Inc., New York, 1984. De Michelis, P., Daglis, I. A., and Consolini, G.: An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements, J. Geophys. Res., 104, 28615–28624, 1999. De Michelis, P., Consolini, G., Materassi, M., and Tozzi, R.: An information theory approach to storm-substorm relationship, J. Geophys. Res., 116, A08225, doi:10.1029/2011JA016535, 2011. Dessler, A. and Parker, E. N.: Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239–2259, 1959. Flandrin, P. and Goncalv`es, P.: Empirical mode decompositions as data driven wavelet-like expansions, Int. J. Wavelets, Multires. Info. Proc., 2, 477–496, 2004. Flandrin, P., Rilling, G., and Goncalv`es, P.: Empirical mode decomposition as a filter bank, IEEE Sig. Proc. Lett., 11, 112–114, 2004. Gonzalez, W., Joselyn, J., Kamide, Y., Kroehl, H., Rostoker, G., Tsurutani, B., and Vasyliunas, V.: What is a Geomagnetic Storm?, J. Geophys. Res., 99, A4, doi:10.1029/93JA02867, 1994. Huang, N. E. and Wu, Z.: A review on Hilbert-Huang Transform: Methods and its applications to geophysical studies, Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228, 2008. Huang, N. E., Shen, Z., Long, S.,R.,Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal Soc. A-Math. Phys., 454, 903– 993, doi:10.1098/rspa.1998.0193, 1998. Huang, N. E., Wu, M. C., Long, S. R., Shen, Z., Qu, W., Gloersen, P., and Fan, K. L.: A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proc. Royal Soc. AMath. Phys., 459, 2317, doi:10.1098/rspa.2003.1123, 2003. Huang, Y. X., Schmitt, F. G., Lu, Z.M., and Liu, Y. L.: An amplitude frequency study of turbulent scaling intermittency using EmpiricalMode Decomposition and Hilbert Analysis, Europhysics Letters, 84, 40010, doi:10.1209/0295-5075/84/40010, 2008. Iyemori T., Araki, T., Kamei, T., and Takeda, M.: Mid-latitude geomagnetic indices ASY and SYM (Provisional), Data Anal. Cent. for Geomagn. and Space Magn., Faculty of Sci., Kyoto Univ., Kyoto, Japan, 1992. Kamide, Y.: Is substorm occurrence a necessary condition for a magnetic storm?, J. Geomagn. Geoelectr., 44, 109–117, 1992. Kamide, Y. and Maltsev, Y. P.: Geomagnetic Storms, in: Handbook of the Solar-Terrestrial Evironment, edited by: Kamide, Y. and Chian, A., Springer-Verlag, Berlin Heidelberg, 2007. Klimas, A. J., Valdivia, J. A., Vassiliadis, D., Baker, D. N., Hesse, M., and Takalo, J.: Self-organized criticality in the substorm phenomena and its relation to localized reconnection in the magnetospheric plasma sheet, J. Geophys. Res., 105, 18765–18780, 2000. Lui, A. T. Y., Chapman, S. C., Liou, K., Newell, P. T., Meng, C. I., Brittnacher, M., and Parks, G. D.: Is the dynamic magnetosphere an avalanching system?, Geophys. Res. Lett., 27, 911–914, 2000. McPherron, R. L.: The role of substorms in the generation of magnetic storms, in: Magnetic Storms, Geophys. Monogr. Ser., vol. 98, pp. 131–147, edited by: Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K., AGU, Washington D.C., 1988. Sckopke, N.: A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71, 3125–3130, doi:10.1029/JZ07i013p03125, 1966. Sitnov, M. I., Sharma, A. S., Papadopoulos, K., Vassiliadis, D., Valdivia, J. A., Klimas A. J., and Baker, D. N.: Phase transition-like behavior of the magnetosphere during substorms, J. Geophys. Res., 105, 12955–12974, doi:10.1029/1999JA000279, 2000. Sitnov, M. I., Sharma, A. S., Papadopoulos, K., and Vassiliadis, D.: Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions, Phys. Rev. E, 65, 016116, doi:10.1103/PhysRevE.65.016116, 2001. Vassiliadis, D.: Systems theory for geospace plasma dynamics, Rev. Geophys., 44, RG2002, doi:10.1029/2004RG000161, 2006. Wanliss, J. A. and Showalter, K. M.: High-resolution global storm index: Dst versus Sym-H, J. Geophys. Res., 111, A02202, doi:10.1029/2005JA011034, 2006. Wu, Z. and Huang, N. E.: A study of the characteristics of white noise using the empirical mode decomposition method, P. Roy. Soc. A-Math. Phy., 460, 1597–1611, 2004. Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C.-C., Yashiro, S., and Zhukov, A. N.: Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res, 112, A10102, doi:10.1029/2007JA012321, 2007. Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Voros, Z., Aburjania, G., Chargazia, K., and Alexandrova, O.: Magnetic Turbulence in the Geospace Environment, Space Sci. Rev. Geophys., 156, 89–134, doi:10.1007/s11214-010-9692-5, 2010.en
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn1023-5809en
dc.relation.eissn1607-7946en
dc.contributor.authorDe Michelis, P.en
dc.contributor.authorConsolini, G.en
dc.contributor.authorTozzi, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptINAF – Istituto di Astrofisica e Planetologia Spaziali, 00133 Roma, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-2708-0739-
crisitem.author.orcid0000-0002-3403-647X-
crisitem.author.orcid0000-0002-1836-4078-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
npg2012.pdf2.08 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s) 5

408
checked on Mar 27, 2024

Download(s) 50

243
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric