Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8515
DC FieldValueLanguage
dc.contributor.authorallHarris, A.; Laboratoire Magmas et Volcans, Université Blaise Pascalen
dc.contributor.authorallAlparone, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBonforte, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDehn, J.; University of Alaska Fairbanksen
dc.contributor.authorallGambino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallLodato, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSpampinato, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2013-02-12T10:20:07Zen
dc.date.available2013-02-12T10:20:07Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8515en
dc.description.abstractBetween 1994 and 2010, we completed 16 thermal surveys of Vulcano’s Fossa fumarole field (Aeolian Islands, Italy). In each survey, between 400 and 1,200 vent temperatures were collected using a thermal infrared thermometer from distances of ∼1 m. The results show a general decrease in average vent temperature during 1994–2003, with the average for the entire field falling from ∼220°C in 1994 to ∼150°C by 2003. However, between 2004 and 2010, we witnessed heating, with the average increasing to ∼190°C by 2010. Alongside these annual-scale field-wide trends, we record a spatial re-organisation of the fumarole field, characterised by shut down of vent zones towards the crater floor, matched by rejuvenation of zones located towards the crater rim. Heating may be expected to be associated with deflation because increased amounts of vaporisation will remove volume from the hydrothermal system Gambino and Guglielmino (J Geophys Res 113: B07402, 2008). However, over the 2004–2010 heating period, no ground deformation was observed. Instead, the number of seismic events increased from a typical rate of 37 events per month during 1994–2000 to 195 events per month during 2004–2010. As part of this increase, we noticed a much greater number of high-frequency events associated with rock fracturing. We thus suggest that the heating event of 2004–2010 was the result of changed permeability conditions, rather than change in the heat supply from the deeper magmatic source. Within this scenario, cooling causes shut down of lower sectors and re-establishment of pathways located towards the crater rim, causing fracturing, increased seismicity and heat flow in these regions. This is consistent with the zone of rejuvenation (which lies towards and at the rim) being the most favourable location for fracturing given the stress field of the Fossa cone Schöpa et al. (J Volcanol Geotherm Res 203:133–145, 2011); it is also the most established zone, having been active at least since the early twentieth century. Our data show the value of deploying multi-disciplinary geophysical campaigns at degassing (fumarolic) hydrothermal systems. This allows more complete and constrained understanding of the true heat loss dynamics of the system. In the case study presented here, it allows us to distinguish true heating from apparent heating phases. While the former are triggered from the bottom-up, i.e. they are driven by increases in heat supply from the magmatic source, the latter are triggered from the top-down, i.e. by changing permeability conditions in the uppermost portion of the system to allow more efficient heat flow over zones predisposed to fracturing.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Berlin Heidelbergen
dc.relation.ispartofBulletin of volcanologyen
dc.relation.ispartofseries/74 (2012)en
dc.subjectFumarolesen
dc.subjectVulcanoen
dc.subjectVent temperatureen
dc.subjectSeismicityen
dc.subjectGround Deformationen
dc.subjectPermeabilityen
dc.titleVent temperature trends at the Vulcano Fossa fumarole field: the role of permeabilityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1293-1311en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1007/s00445-012-0593-1en
dc.relation.referencesAlparone S, Cannata A, Gambino S, Gresta S, Milluzzo V, Montalto P (2010) Time-space variation of volcano-seismic events at La Fossa (Vulcano, Aeolian Islands, Italy): new insights into seismic sources in a hydrothermal system. Bull Volcanol 72: 803-816 Aubert M, Diliberto S, Finizola A, Chébli Y (2008) Double origin of hydrothermal convective flux variations in the Fossa of Vulcano (Italy). Bull Volcanol 70: 743-751 Barberi F, Neri G, Valenza M, Villari L (1991) 1987-1990 Unrest at Vulcano. Acta Vulcanol 1: 95-106 Bonaccorso A, Bonforte A, Gambino S (2010) Thermal expansion-contraction and slope instability of a fumarole field inferred from geodetic measurements at Vulcano. Bull Volcanol doi: 10.1007/s00445-010-0366-7 Bonforte A., Guglielmino F. (2008) Transpressive strain on the Lipari–Vulcano volcanic complex and dynamics of the “La Fossa” cone (Aeolian Islands, Sicily) revealed by GPS surveys on a dense network. Tectonophysics 457: 64-70 doi:10.1016/j.tecto.2008.05.016 Bukumirovic T, Italiano F, Nuccio PM, Pecoraino G, Principio E (1996) Evolution of the fumarolic activity at La Fossa crater of Vulcano. Acta Vulcanol 8: 210-212 Bukumirovic T, Italiano F, Nuccio PM (1997) The evolution of a dynamic geological system: the support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy J Volcanol Geotherm Res 79: 253-263 Capasso G, Inguaggiato S, Nuccio PM, Pecoraino G, Sortino F (1994) Chemical variations in the fumarolic gases of La Fossa di Vulcano crater. Acta Vulcanol 4: 41-43 Cannata, A., Diliberto, S., Alparone, S., Gambino, S., Gresta, S., Liotta, M., Madonia, P., Milluzzo, V., Aliotta, M., Montalto, P (2012) Multiparametric approach in investigating volcano-hydrothermal systems: the case study of Vulcano (Aeolian Islands, Italy) Pure and App. Geophy., doi:10.1007/s00024-011-0297-z. Carapezza M, Nuccio PM, Valenza M (1981) Genesis and evolution of the fumaroles of Vulcano (Aeolian Island Italy). Bull Volcanol 44: 547-563 Chiodini G, Cioni R, Guidi M, Marini L, Raco B, Taddeucci G (1992a) Gas geobarometry in boiling hydrothermal systems: a possible tool to evacuate the hazard of hydrothermal explosions. Acta Vulcanol 2: 99-107 Chiodini G, Cioni R, Falsaperla S, Montalto A, Guidi M, Marini L (1992b) Geochemical and seismological investigations at Vulcano (Aeolian Islands) during 1978-1989. J Geophys Res 97(B7): 11025-11032 Chiodini G, Cioni R, Marini L (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island Italy, and implications for volcanic surveillance. Appl Geoch 8: 357-371 Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano island, Italy, and implication for volcanic surveillance. Bull Volcanol 57: 99-110 Chiodini G, Granieri D, Avino R, Caliro S, Costa A. (2005) Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110:B08204, doi:10.1029/2004JB003542 Cioni R, D’Amore F (1984) A genetic model for the crater fumaroles of Vulcano Island (Sicily, Italy). Geothermics 13: 375-384 Diliberto, I. S (2011) Long-term variations of fumaroles temperatures on Vulcano Island (Italy) Ann. Geophys., 54, 175-185 Falsaperla S, Frazzetta G, Neri G, Nunnari G, Velardita R, Villari L (1989) Volcano monitoring in the Aeolian Islands (Southern Tyrrenian sea): the Lipari-Vulcano eruptive complex. In Latter JH (Ed) Volcanic Hazards: assessment and monitoring IAVCEI Proceedings in Volcanology 1, Springer Verlag, New York, 337-356 Gambino S, Guglielmino F (2008) Ground deformation induced by geothermal processes: A model for La Fossa Crater (Vulcano Island, Italy). J Geophys Res 113: B07402. doi: 10.1029/2007JB005016 Gaonac’h H, Vandemeulebrouck J, Stix J, Halbachs M (1994) Thermal infrared satellite measurements of volcanic activity at Stromboli and Vulcano. J Geophys Res 99(B5): 9477-9485 Granieri D, Avino R, Carapezza ML, Chiodini G, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy). Evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33: L13316 doi:10.1029/2006GL026460 Giustolisi V, de Oliveira HA (2005) Bibliografia generale delle Isole Eolie: Vulcano. Centro di Documentazione e Ricerca per La Sicilia Antica “P. Orsi” – Onlus (Palmermo): 216 p. Hardee HC (1982) Permeable convection above magma bodies. Tectonophysics 84: 179-195 Harris AJL, Maciejewski AJH (2000) Thermal survey's of the Vulcano Fossa fumarole field 1994-1999: evidence for fumarole migration and sealing. J Volcanol Geotherm Res 102(1-2): 119-147. Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geothem Res 76:175–198 Harris AJL, Lodato L, Dehn J, Spampinato L (2009) Thermal characterization of the Vulcano fumarole field. Bull Volcanol 71: 441-458 Italiano F, Nuccio PM, Valenza M (1984) Geothermal energy and mass release at Vulcano, Aeolian Island, Italy. Rend Soc Ital Min Petrol 39: 379-386 Italiano F, Nuccio P. (1992) Volcanic steam output directly measured in fumaroles: the observed variations at Vulcano Island Italy, between 1983 and 1987. Bull Volcanol 54: 623-630 Lodato L, Spampinato L, Harris AJL, Dehn J, James MR, Pecora E, Biale, E, Curcuruto A (2008) Use of forward looking infrared thermal cameras at active volcanoes. In: Conception, verification and application of innovative techniques to study active volcanoes, eds. W. Marzocchi & A. Zollo, Istituto Nazionale di Geofisica e Vulcanologia (Italy), pp. 427-434. Martini, M., Giannini, L., Capaccioni, B., 1991. The influence of water on chemical changes of fumarolic gases: different characters and their implications for forecasting volcanic activity. Acta Volcanol. 1, 13-16. Matsushima N, Kazahaya K, Saito G, Shinohara H (2003) Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999. J Volcanol Geotherm Res 126:285–301 Martini, M., Giannini, L., Capaccioni, B., 1991. Geochemical and seismic precursors to volcanic activity. Acta Volcanol. 1, 7-11. Mazor E, Cioni R, Corazza E, Fratta M, Magro G, Matsuo S, Hirabayashi J, Shinohara H, Martini M, Piccardi G, Cellini-Legittimo P (1988) Evolution of fumarolic gases – boundary conditions set by measured parameters: case study at Vulcano, Italy. Bull Volcanol 50: 71-85 Oppenheimer CMM, Rothery DA (1991) Infrared monitoring of volcanoes by satellite. J Geolog Soc Lon 148: 563-569 Schöpa A, Pantaleo M, Walter TA (2011) Scale-dependent location of hydrothermal vents: stress field models and infrared field observations of the Fossa Cone, Vulcano Island, Italy. J Volcanol Geotherm Res 203: 133-145 Sicardi L (1940) Il recente ciclo dell’attività fumarolica dell’isola di Vulcano. Bull Volcanol 7: 85-140 Stevenson DS (1993) Physical models of fumarolic flow. J Volcanol Geotherm Res 57: 139-156 Todesco M, Rinaldi AP, Bonafede M (2010) Modeling of unrest signals in heterogeneous hydrothermal systems. J Geophys Res 115: B09213 doi: 10.1029/2010JB007474en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0258-8900en
dc.relation.eissn1432-0819en
dc.contributor.authorHarris, A.en
dc.contributor.authorAlparone, S.en
dc.contributor.authorBonforte, A.en
dc.contributor.authorDehn, J.en
dc.contributor.authorGambino, S.en
dc.contributor.authorLodato, L.en
dc.contributor.authorSpampinato, L.en
dc.contributor.departmentLaboratoire Magmas et Volcans, Université Blaise Pascalen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-1161-1512-
crisitem.author.orcid0000-0003-0435-7763-
crisitem.author.orcid0000-0001-8055-3059-
crisitem.author.orcid0000-0003-3599-962X-
crisitem.author.orcid0000-0002-0809-9135-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Harris_et_al_BV_2012.pdf1.48 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s) 50

330
checked on Apr 17, 2024

Download(s)

30
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric