Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8502
AuthorsPalo, M.* 
Cusano, P.* 
TitleWavefield decomposition and phase space dynamics of the seismic noise at Volcan de Colima, Mexico: evidence of a two-state source process
Issue Date18-Jan-2013
Series/Report no./20 (2013)
DOI10.5194/npg-20-71-2013
URIhttp://hdl.handle.net/2122/8502
KeywordsTime series analysis
Colima volcano
Phase space
Independent Component Analysis
volcanic tremor
microseismic noise
Subject Classification04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology 
AbstractWe analyse the seismic noise recorded at the Colima Volcano (Mexico) in the period December 2005–May 2006 by four broadband three-component seismic stations. Specifically, we characterize the spectral content of the signal and follow its time evolution along all the data set. Moreover, we infer the properties of the attractor in the phase space by false nearest neighbours analysis and Grassberger–Procaccia algorithm, and adopt a time-domain decomposition method (independent component analysis) to find the basic constituents (independent components) of the system. Constraints on the seismic wavefield are inferred by the polarization analysis. We find two states of the background seismicity visible in different time-intervals that are Phase A and Phase B. Phase A has a spectrum with two peaks at 0.15 Hz and 0.3 Hz, with the latter dominating, an attractor of correlation dimension close to 3, three quasi-monochromatic independent components, and a relevant fraction of craterpointing polarization solutions in the near-field. In Phase B, the spectrum is preserved but with the highest peak at 0.15 Hz, the attractor has a correlation dimension close to 2, two independent components are extracted, and the polarization solutions are dominated by Rayleigh waves incoming from the southwest direction. We depict two sources acting on the background seismicity that are the microseismic noise loading on the Pacific coastline and a low-energy volcanic tremor. A change in the amplitude of the macroseismic noise can induce the switching from a state of the system to the other.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Palo&Cusano2013NPG.pdfArticle34.93 MBAdobe PDFView/Open
Show full item record

Page view(s)

54
checked on Apr 26, 2017

Download(s)

32
checked on Apr 26, 2017

Google ScholarTM

Check

Altmetric