Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8499
DC FieldValueLanguage
dc.contributor.authorallUrbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallNicolosi, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZeoli, A.; Museo Nazionale dell’Antartide Universita` di Siena, Via Laterina 8, 53100 Siena, Italyen
dc.contributor.authorallEl Khrepy, S.; National Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.authorallLethy, A.; National Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.authorallHafez, M.; National Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.authorallEl Gabry, M.; National Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.authorallEl Barkooky, A.; Department of Geology, Faculty of Sciences, Cairo University, Giza, Egypten
dc.contributor.authorallBarakat, A.; Egyptian Mineral Resources Authority, 3 Salah Salem Road, Abassiya, Cairo, Egypten
dc.contributor.authorallGomaa, M.; Museo Nazionale dell’Antartide Universita` di Siena, Via Laterina 8, 53100 Siena, Italyen
dc.contributor.authorallRadwan, A. M.; Museo Nazionale dell’Antartide Universita` di Siena, Via Laterina 8, 53100 Siena, Italyen
dc.contributor.authorallEl Sharkawi, M.; Department of Geology, Faculty of Sciences, Cairo University, Giza, Egypten
dc.contributor.authorallD’Orazio, M.; Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, 56126 Pisa, Italyen
dc.contributor.authorallFolco, L.; Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, 56126 Pisa, Italyen
dc.date.accessioned2013-01-29T09:59:30Zen
dc.date.available2013-01-29T09:59:30Zen
dc.date.issued2012-12-14en
dc.identifier.urihttp://hdl.handle.net/2122/8499en
dc.description.abstractWe detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small-scale hypervelocity impact craters. It is an exceptionally well-preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth-to-diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45 . Newly identified asymmetries, including the off-center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well-preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofMeteoritics & Planetary Scienceen
dc.relation.ispartofseries11 / 47 (2012)en
dc.subjectImpact cratersen
dc.subjectgeophysical surveyen
dc.subjectiron meteoriteen
dc.subjectimpact scenarioen
dc.titleGeological and geophysical investigation of Kamil crater, Egypten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1842–1868en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.identifier.doi10.1111/maps.12023en
dc.relation.referencesAnderson J. L. B. and Schultz P. H. 2006. Flow-field center migration during vertical and oblique impacts. International Journal of Impact Engineering 33:35–44. Artemieva N. and Pierazzo E. 2009. The Canyon Diablo impact event: Projectile motion through the atmosphere. Meteoritics & Planetary Science 44:25–42. Artemieva N. and Pierazzo E. 2011. The Canyon Diablo impact event: 2. Projectile fate and melting upon impact. Meteoritics & Planetary Science 46:805–829. Bland P. A. and Artemieva N. A. 2006. The rate of small impacts on Earth. Meteoritics & Planetary Science 41: 607–631. Bottke W. F., Love S. G., Tytell D., and Glotch T. 2000. Interpreting the elliptical crater populations on Mars, Venus, and the Moon. Icarus 145:108–121. Collins G. S., Melosh H. J., and Marcus R. A. 2005. Earth impact effects program: A web-based computer program for calculating the regional and environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science 40:817–840. Collins G. S., Melosh H. J., and Osinski G. R. 2012. The impact cratering process. Elements 8:25–30. Dence M. R. 1965. The extraterrestrial origin of the Canadian craters. Annals of the New York Academy of Sciences 123:941–969. D’Orazio M., Folco L., Zeoli A., and Cordier C. 2011. Gebel Kamil: The iron meteorite that formed the Kamil Crater (Egypt). Meteoritics & Planetary Science 46:1179–1196. Ekholm A. G. and Melosh H. J. 2001. Crater features diagnostic of oblique impacts: The size and position of the central peak. Geophysical Research Letters 28:623–626. Folco L. and D’Orazio M. 2011. Shocked quartz at the Kamil Crater (Egypt) (abstract #5018). Meteoritics & Planetary Science 46:A67. Folco L., Di Martino M., El Barkooky A., D’Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakat A. A., Serra R., and El Sharkawi M. 2010. The Kamil crater in Egypt. Science 329:804. Folco L., Di Martino M., El Barkooky A., D’Orazio M., Lethy A., Urbini S., Nicolosi I., Hafez M., Cordier C., van Ginneken M., Zeoli A., Radwan A. M., El Khrepy S., El Gabry M., Gomaa M., Barakat A. A., Serra R., and El Sharkawi M. 2011. Kamil crater (Egypt): Ground truth for small-scale meteorite impacts on Earth. Geology 39:179–182. Gault D. E. and Wedekind J. A. 1978. Experimental studies of oblique impact. Proceedings, 9th Lunar and Planetary Science Conference. pp. 3843–3875. Gerovskaa D., Arau` zo-Bravo M. J., and Stavrevc P. 2004. Determination of the parameters of compact ferro-metallic with transforms of magnitude magnetic anomalies. Journal of Applied Geophysics 55:173–186. Grieve R. A. F. 2001. The terrestrial cratering record. In Accretion of extraterrestrial matter through Earth’s history, edited by Peucker-Ehrenbrink B. and Schmitz B. New York: Kluwer Academic ⁄ Plenum Publishers. pp. 379–402. Grieve R. A. F. and Garvin J. B. 1984. A geometric model for excavation and modification at terrestrial simple impact craters. Journal of Geophysical Research 89:11,561–11,572. Grieve R. A. F. and Therriault A. M. 2004. Observations at terrestrial impact structures: Their utility in constraining crater formation. Meteoritics&Planetary Science 39:199–216. Halliday I., Griffin A. A., and Blackwell A. T. 1996. Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteoritics & Planetary Science 31:185–217. Herrick R. R. and Forsberg-Taylor N. K. 2003. The shape and appearance of craters formed by oblique impact on the Moon and Venus. Meteoritics & Planetary Science 38: 1551–1578. Herrick R. R. and Hessen K. K. 2006. The planforms of lowangle impact craters in the northern hemisphere of Mars. Meteoritics & Planetary Science 41:1483–1495. Herrick R. R. and Phillips R. J. 1994. Implications of a global survey of Venusian impact craters. Icarus 111:387–416. International Geomagnetic Reference Field. International Association of Geomagnetism and Aeronomy, Working Group V-MOD. Participating members: Finlay C. C.,Maus S., Beggan C. D., Bondar T. N., Chambodut A., Chernova T. A., Chulliat A., Golovkov V. P., Hamilton B., Hamoudi M., Holme R., Hulot G., Kuang W., Langlais B., Lesur V., Lowes F. J., Luhr H., Macmillan S., Mandea M., McLean S., Manoj C., Menvielle M., Michaelis I., Olsen N., Rauberg J., Rother M., Sabaka T. J., Tangborn A., Toffner-Clausen L., Thebault E., ThomsonA.W. P., Wardinski I.,Wei Z., and Zvereva T. I. 2010. International Geomagnetic Reference Field: The eleventh generation. Geophysical Journal International 183(3):1216–1230 doi:10.1111/j.1365-246X.2010.04804.x. Kenkmann T., Artemieva N. A., Wu¨ nnemann K., Poelchau M. H., Elbeshausen D., and Nu´ n˜ ez Del Prado H. 2009. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics & Planetary Science 44:985–1000. Kenkmann T., Wu¨ nnemann K., Deutsch A., Poelchau M. H., Sha¨ fer F., and Thoma K. 2011. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics & Planetary Science 46:890–902. Klerkx J. 1980. Age and metamorphic evolution of the basement complex around Gabal Al Uwaynat. In The Geology of Libya, edited by Salem M. J. and Busserawil M. T. London: Academic Press. pp. 901–906. Klitzsch E., Harms J. C., Lejal-Nicol A., and List F. K. 1979. Nubia strata, south-western Egypt. American Association of Petroleum Geologists Bulletin 63:967–974. Klitzsch E., List F. K., and Po¨ hlmann G., eds. 1987. Geological Map of Egypt, 1: 500 000, NF 35 NW, Gilf Kebir Plateau. The Egyptian General Petroleum Corporation. Kofman R. S., Herd C. D. K., and Froese D. G. 2010. The Whitecourt meteorite impact crater, Alberta, Canada. Meteoritics & Planetary Science 45:1429–1445. Langenhorst F. and Deutsch A. 1994. Shock experiments on pre-heated a- and b- quartz: I. Optical and density data. Earth and Planetary Science Letters 125:407–420. Melosh H. J. 1989. Impact cratering: A geologic process: Oxford Monographs on Geology and Geophysics 11. Oxford: Oxford University Press. 245 p. Melosh H. J. 2011. Planetary surface processes. Cambridge: Cambridge University Press. 550 p. Moore H. J., Hodges C. A., and Scott D. H. 1974. Multiringed basins—Illustrated by Orientale and associated features. Proceedings, 5th Lunar Science Conference. pp. 71–100. Morbidelli A., Jedicke R., Bottke W. F., Michel P., and Tedesco E. F. 2002. From magnitude to diameters: The albedo distribution of near-Earth objects and the Earth collision hazard. Icarus 158:329–343. Nemtchinov I. V., Svetsov V. V., Kosarev I. B., Golub’ A. P., Popova O. P., and Shuvalov V. V. 1997. Assessment of the kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 130:259–274. O’Keefe J. D. and Ahrens T. J. 1985. Sampling of planetary surfaces by oblique impact jet entrainment (abstract). 16th Lunar and Planetary Science Conference. pp. 629–630. Orti L., Di Martino M., Morelli M., Cigolini C., Pandeli E., and Buzzigolis A. 2008. Non-impact origin of the craterlike structures in the Gilf Kebir area (Egypt): Implications for the geology of eastern Sahara. Meteoritics & Planetary Science 43:1629–1639. Passey Q. R. and Melosh H. J. 1980. Effects of atmospheric breakup on crater field formation. Icarus 42:211–233. Pierazzo E. and Melosh H. J. 2000a. Understanding oblique impacts from experiments, observations and modeling. Annual Review of Earth and Planetary Sciences 28:141–167. Pierazzo E. and Melosh H. J. 2000b. Hydrocode modeling of oblique impacts: The fate of the projectile. Meteoritics & Planetary Science. 35:117–130. Pike R. J. 1977. Size dependence in the shape of fresh impact craters on the Moon. In Impact and Explosion Cratering, edited by Roddy D. J., Pepin R. O., and Merrill R. B. New York: Pergamon Press. pp. 489–509. Poelchau M. H., Kenkmann T., and Kring D. A. 2009. Rim uplift and crater shape in Meteor Crater: The effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research 114:E01006, doi:10.1029/2008JE003235. Polanskey C. A. and Ahrens T. J. 1990. Impact spallation experiments: Fracture patterns and spall velocities. Icarus 87:140–155.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1086-9379en
dc.relation.eissn1945-5100en
dc.contributor.authorUrbini, S.en
dc.contributor.authorNicolosi, I.en
dc.contributor.authorZeoli, A.en
dc.contributor.authorEl Khrepy, S.en
dc.contributor.authorLethy, A.en
dc.contributor.authorHafez, M.en
dc.contributor.authorEl Gabry, M.en
dc.contributor.authorEl Barkooky, A.en
dc.contributor.authorBarakat, A.en
dc.contributor.authorGomaa, M.en
dc.contributor.authorRadwan, A. M.en
dc.contributor.authorEl Sharkawi, M.en
dc.contributor.authorD’Orazio, M.en
dc.contributor.authorFolco, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentMuseo Nazionale dell’Antartide Universita` di Siena, Via Laterina 8, 53100 Siena, Italyen
dc.contributor.departmentNational Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.departmentNational Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.departmentNational Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.departmentNational Research Institute of Astronomy and Geophysics, Helwan, Egypten
dc.contributor.departmentDepartment of Geology, Faculty of Sciences, Cairo University, Giza, Egypten
dc.contributor.departmentEgyptian Mineral Resources Authority, 3 Salah Salem Road, Abassiya, Cairo, Egypten
dc.contributor.departmentMuseo Nazionale dell’Antartide Universita` di Siena, Via Laterina 8, 53100 Siena, Italyen
dc.contributor.departmentMuseo Nazionale dell’Antartide Universita` di Siena, Via Laterina 8, 53100 Siena, Italyen
dc.contributor.departmentDepartment of Geology, Faculty of Sciences, Cairo University, Giza, Egypten
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, 56126 Pisa, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, 56126 Pisa, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptMuseo Nazionale dell’Antartide Università di Siena, Via Laterina 8, 53100 Siena, Italy-
crisitem.author.deptNational Research Institute of Astronomy and Geophysics, Helwan, Egypt-
crisitem.author.deptNational Research Institute of Astronomy and Geophysics, Helwan, Egypt-
crisitem.author.deptNational Research Institute of Astronomy and Geophysics, Helwan, Egypt-
crisitem.author.deptNational Research Institute of Astronomy and Geophysics, Helwan, Egypt-
crisitem.author.deptDepartment of Geology, Faculty of Sciences, Cairo University, Giza, Egypt-
crisitem.author.deptEgyptian Mineral Resources Authority, 3 Salah Salem Road, Abassiya, Cairo, Egypt-
crisitem.author.deptNational Research Centre, Geophysical Sciences Dep., El-Tahrir St. Dokki, 12311, Egypt-
crisitem.author.deptNational Research Institute of Astronomy and Geophysics, Helwan, Egypt-
crisitem.author.deptDepartment of Geology, Faculty of Sciences, Cairo University, Giza, Egypt-
crisitem.author.deptMuseo Nazionale dell'Antartide, Università di Siena, via Laterina 8, I-53100 Siena, Italy-
crisitem.author.orcid0000-0002-8053-4197-
crisitem.author.orcid0000-0002-0711-9923-
crisitem.author.orcid0000-0002-5230-0115-
crisitem.author.orcid0000-0003-1366-3260-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Urbini_Kamil_2012MAPS.pdf1.75 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

15
checked on Feb 10, 2021

Page view(s) 10

444
checked on Apr 13, 2024

Download(s) 50

69
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric