Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8498
DC FieldValueLanguage
dc.contributor.authorallScambos, T. A.; National Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USAen
dc.contributor.authorallFrezzotti, M.; ENEA-CRE, Casaccia, Rome, Italyen
dc.contributor.authorallHaran, T.; National Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USAen
dc.contributor.authorallBohlander, J.; National Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USAen
dc.contributor.authorallLenaerts, J. T. M.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlandsen
dc.contributor.authorallVan Den Broeke, M. R.; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlandsen
dc.contributor.authorallJezek, K.; Byrd Polar Research Center, The Ohio State University, Columbus, OH, USAen
dc.contributor.authorallLong, D.; Department of Electrical Engineering, Brigham Young University, Provo, UT, USAen
dc.contributor.authorallUrbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFarness, K.; Byrd Polar Research Center, The Ohio State University, Columbus, OH, USAen
dc.contributor.authorallNeumann, T.; NASA Goddard Space Flight Center, Greenbelt, MD, USAen
dc.contributor.authorallAlbert, M.; Thayer School of Engineering, Dartmouth College, Hanover, NH, USAen
dc.contributor.authorallWinther, J.-G.; Norwegian Polar Institute, Tromsø, Norwayen
dc.date.accessioned2013-01-29T09:56:52Zen
dc.date.available2013-01-29T09:56:52Zen
dc.date.issued2012-08en
dc.identifier.urihttp://hdl.handle.net/2122/8498en
dc.description.abstractPersistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called ‘glaze’ surfaces due to their polished appearance. They are typically 2–200km2 in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 1.7%, or 950 143 103 km2, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46–82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.en
dc.language.isoEnglishen
dc.publisher.nameInternational Glaciological Societyen
dc.relation.ispartofJournal of Glaciologyen
dc.relation.ispartofseries210 / 58 (2012)en
dc.subjectAntarcticaen
dc.subjectsnow accumulationen
dc.subjectSurface Mass Balanceen
dc.titleExtent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: implications for continental ice mass balanceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber633-647en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneousen
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interactionen
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.06. Mass balanceen
dc.identifier.doi10.3189/2012JoG11J232en
dc.relation.referencesAlbert M, Shuman C, Courville Z, Bauer R, Fahnestock M and Scambos T (2004) Extreme firn metamorphism: impact of decades of vapor transport on near-surface firn at a lowaccumulation glazed site on the East Antarctic plateau. Ann. Glaciol., 39, 73–78 (doi: 10.3189/172756404781814041) Arcone SA, Jacobel R and Hamilton G (2012) Unconformable stratigraphy in East Antarctica: Part I. Large firn cosets, recrystallized growth, and model evidence for intensified accumulation. J. Glaciol., 58(208), 240–252 (doi: 10.3189/2012JoJ11J044) Arthern RJ, Winebrenner DP and Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3cm wavelength microwave emission. J. Geophys. Res., 111(D6), D06107 (doi: 10.1029/2004JD005667) Bamber JL, Gomez-Dans JL and Griggs JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3(1), 101–111 Benson CS (1960) Stratigraphic studies in the snow and firn of the Greenland ice sheet. (PhD thesis, California Institute of Technology) Bintanja R and Van den Broeke MR (1995) The climate sensitivity of Antarctic blue-ice areas. Ann. Glaciol., 21, 157–161 Bromwich DH, Guo Z, Bai L and Chen Q (2004) Modelled Antarctic precipitation. Part I: spatial and temporal variability. J. Climate, 17(3), 427–447 Brown IC and Scambos TA (2004) Satellite monitoring of blue-ice extent near Byrd Glacier, Antarctica. Ann. Glaciol., 39, 223–230 (doi: 10.3189/172756404781813871) Connolley WM (1996) The Antarctic temperature inversion. Int. J. Climatol., 16(12), 1333–1342 Courville ZR, Albert MR, Fahnestock MA, Cathles LM and Shuman CA (2007) Impacts of an accumulation hiatus on the physical properties of firn at a low-accumulation polar site. J. Geophys. Res., 112(F2), F02030 (doi: 10.1029/2005JF000429) DenHartog SL (1959) Snow pit work on Little America–Victoria Land Traverse 1958–1959. The Ohio State University, Columbus, OH (OSU Research Foundation Report 825-2, Pt 2) Ding M and 6 others (2011) Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol., 57(204), 658–666 (doi: 10.3189/002214311797409820) Fahnestock M, Bindschadler R, Kwok R and Jezek K (1993) Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262(5139), 1530–1534 Fahnestock MA, Scambos TA, Shuman CA, Arthern RJ,Winebrenner DP and Kwok R (2000) Snow megadune fields on the East Antarctic Plateau: extreme atmosphere–ice interaction. Geophys. Res. Lett., 27(22), 3719–3722 (doi: 10.1029/1999GL011248) Frezzotti M, Gandolfi S, La Marca F and Urbini S (2002a) Snow dunes and glazed surfaces in Antarctica: new field and remotesensing data. Ann. Glaciol., 34, 81–88 (doi: 10.3189/ 172756402781817851) Frezzotti M, Gandolfi S and Urbini S (2002b) Snow megadunes in Antarctica: sedimentary structure and genesis. J. Geophys. Res., 107(D18), 4344 (doi: 10.1029/2001JD000673) Frezzotti M and 13 others (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J. Glaciol., 51(172), 113–124 (doi: 10.3189/ 172756505781829502) Frezzotti M, Urbini S, Proposito M, Scarchilli C and Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res., 112(F2), F02032 (doi: 10.1029/2006JF000638) Fujii Y and Kusunoki K (1982) The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica. J. Geophys. Res., 87(C6), 4293–4300 (doi: 10.1029/JC087iC06p04293) Gay M, Fily M, Genthon C, Frezzotti M, Oerter H and Winther JG (2002) Snow grain-size measurements in Antarctica. J. Glaciol., 48(163), 527–535 (doi: 10.3189/172756502781831016) Giovinetto MB (1963) Glaciological studies on the McMurdo– South Pole traverse, 1960–1961. Inst. Polar Stud. Rep. 7 Giovinetto MB and Zwally HJ (2000) Spatial distribution of net surface accumulation on the Antarctic ice sheet. Ann. Glaciol., 31, 171–178 Goodwin ID (1990) Snow accumulation and surface topography in the katabatic zone of eastern Wilkes Land, Antarctica. Antarct. Sci., 2(3), 235–242 Goodwin ID, Higham M, Allison I and Ren J (1994) Accumulation variation in eastern Kemp Land, Antarctica. Ann. Glaciol., 20, 202–206 Hoen EW and Zebker HA (2000) Topography-driven variations in backscatter strength and depth observed over the Greenland Ice Sheet with InSAR. In 20th International Geoscience and Remote Sensing Symposium (IGARSS 2000), 24–28 July 2000, Honolulu, HI, USA. Proceedings, Vol. 2. Institute of Electrical and Electronic Engineers, Piscataway, NJ, 470–472 Jezek KC (2003) Observing the Antarctic ice sheet using the RADARSAT-1 synthetic aperture radar. Polar Geogr., 27(3), 197–209 (doi: 10.1080/789610167) King JC, Anderson PS, Vaughan DG, Mann GW, Mobbs SD and Vosper SB (2004) Wind-borne redistribution of snow across an Antarctic ice rise. J. Geophys. Res., 109(D11), D11104 (doi: 10.1029/2003JD004361) Lambert B and Long D (2006) A large-scale Ku-band backscatter model of the East-Antarctic megadune fields. In 26th International Geoscience and Remote Sensing Symposium (IGARSS 2006), 31 July–4 August 2006, Denver, CO, USA. Proceedings, Vol. 2. Institute of Electrical and Electronic Engineers, Piscataway, NJ, 3832–3834 Lenaerts JTM, Van den Broeke MR, Van de Berg WJ, Van Meijgaard E and Kuipers Munneke P (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713) Liu H, Jezek KC and Li B (1999) Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: a geographic information system based approach. J. Geophys. Res., 104(B10), 23 199–23 213 (doi: 10.1029/ 1999JB900224) Long DG and Drinkwater MR (2000) Azimuth variation in microwave scatterometer and radiometer data over Antarctica. IEEE Trans. Geosci. Remote Sens., 38(4), 1857–1870 Magand O and 6 others (2007) An up-to-date quality-controlled surface mass balance dataset for the 908–1808E Antarctica sector and 1950–2005 period. J. Geophys. Res., 112(D12), D12106 (doi: 10.1029/2006JD007691) Magand O, Picard G, Brucker L, Fily M and Genthon C (2008) Snow melting bias in microwave mapping of Antarctic snow accumulation. Cryosphere, 2(2), 109–115 (doi: 10.5194/tc-2- 109-2008) Monaghan AJ, Bromwich DH and Wang S-H (2006) Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 1683–1708 (doi: 10.1098/rsta.2006.1795) Motoyama H and 7 others (2008) Glaciological data collected by the 45th, 46th and 47th Japanese Antarctic Research Expedition during 2004–2007. JARE Data Rep. 308 (Glaciology 34) Mu¨ ller K and 6 others (2010) An 860 km surface mass-balance profile on the East Antarctic plateau derived by GPR. Ann. Glaciol., 51(55), 1–8 (doi: 10.3189/172756410791392718) Neumann TA, Waddington ED, Steig EJ and Grootes PM (2005) Non-climate influences on stable isotopes at the Taylor Mouth, Antarctica. J. Glaciol., 51(173), 248–258 (doi: 10.3189/ 172756505781829331) Nolin AWand Dozier J (2000) A hyperspectral method for remotely sensing the grain size of snow. Remote Sens. Environ., 74(2), 207–216 (doi: 10.1016/S0034-4257(00)00111-5) Nolin AW, Fetter F and Scambos T (2002) Surface roughness characterizations of sea ice and ice sheets: case studies with MISR data. IEEE Trans. Geosci. Remote Sens., 40(7), 1605–1615 (doi: 10.1109/TGRS.2002.801581) Parish TR and Bromwich DH (1987) The surface windfield over the Antarctic ice sheets. Nature, 328(6125), 51–54 Powers JG, Monaghan AJ, Cayette AM, Bromwich DH, Kuo Y-H and Manning KW (2003) Real-time mesoscale modeling over Antarctica: the Antarctic Mesoscale Prediction System (AMPS). Bull. Am. Meteorol. Soc., 84(11), 1533–1545 (doi: 10.1175/BAMS- 84-11-1533) Rignot E and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106–110 (doi: 10.1038/ngeo102) Rundle AS (1971) Snow accumulation and firn stratigraphy on the East Antarctic plateau. In Crary AP ed. Antarctic snow and ice studies II. American Geophysical Union, Washington, DC, 239–255 (Antarctic Research Series 16) Scambos TA, Fahnestock MA, Shuman C and Haran TM (2006) Impact of megadunes and glaze areas on estimates of East Antarctic mass balance and accumulation rate change. [Abstr. C11A-1130] Am. Geophys. Union, Fall Meet. Scambos TA, Haran TM, Fahnestock MA, Painter TH and Bohlander J (2007) MODIS-based Mosaic of Antarctica (MOA) datasets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242–257 (doi: 10.1016/ j.rse.2006.12.020) Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L and Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Climate Dyn., 34(7–8), 1195–1206 (doi: 10.1007/s00382-009-0601-0) Shuman CA and Alley RB (1993) Spatial and temporal characterization of hoar formation in central Greenland using SSM/I brightness temperatures. Geophys. Res. Lett., 20(23), 2643–2646 Siegert MJ, Hindmarsh RCA and Hamilton GS (2003) Evidence for a large surface ablation zone in central East Antarctica during the last Ice Age. Quat. Res., 59(1), 114–121 (doi: 10.1016/S0033- 5894(02)00014-5) Stearns LA (2007) Outlet glacier dynamics in East Greenland and East Antarctica. (PhD thesis, University of Maine) Stearns LA (2011) Dynamics and mass balance estimates of four large East Antarctic outlet glaciers. Ann. Glaciol., 52(59), 116–126 (doi: 10.3189/172756411799096187) Suhn H-G, Jezek K, Baumgartner F, Forster R and Mosley-Thompson E (1999) Radar backscatter measurements from RADARSAT SAR imagery of South Pole Station, Antarctica. In Stein TI ed. 19th International Geoscience and Remote Sensing Symposium (IGARSS ’99), 28 June–2 July 1999, Hamburg, Germany. Proceedings, Vol. 5. Institute of Electrical and Electronic Engineers, Piscataway, NJ, 2360–2362 Van de Berg WJ, Van den Broeke MR, Reijmer CH and Van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495) Van den Broeke MR, Van Lipzig NPM and Van Meijgaard E (2002) Momentum budget of the East-Antarctic atmospheric boundary layer: results of a regional climate model. J. Atmos. Sci., 59(21), 3117–3129 (doi: 10.1175/1520-0469(2002)059<3117: MBOTEA>2.0.CO;2) Van den Broeke M, Van de Berg WJ, Van Meijgaard E and Reijmer C (2006) Identification of Antarctic ablation areas using a regional atmospheric climate model. J. Geophys. Res., 111(D18), D18110 (doi: 10.1029/2006JD007127) Vaughan DG, Bamber JL, Giovinetto MB, Russell J and Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J. Climate, 12(4), 933–946 (doi: 10.1175/1520-0442(1999)012 <0933:RONSMB>2.0.CO;2) Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36(19), L19503 (doi: 10.1029/ 2009GL040222) Warren SG and Brandt RE (2008) Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res., 113(D14), D14220 (doi: 10.1029/2007JD009744) Watanabe O (1978) Distribution of surface features of snow cover in Mizuho Plateau. Mem. Natl Inst. Polar Res., Special Issue 7, 154–181 Wen J, Jezek KC, Monaghan AJ, Sun B, Ren J and Huybrechts P (2006) Accumulation variability and mass budgets of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, at high elevations. Ann. Glaciol., 43, 351–360 (doi: 10.3189/ 172756406781812249) Winther J-G, Jespersen MN and Liston GE (2001) Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol., 47(157), 325–334 (doi: 10.3189/172756501781832386)en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0022-1430en
dc.relation.eissn1727-5652en
dc.contributor.authorScambos, T. A.en
dc.contributor.authorFrezzotti, M.en
dc.contributor.authorHaran, T.en
dc.contributor.authorBohlander, J.en
dc.contributor.authorLenaerts, J. T. M.en
dc.contributor.authorVan Den Broeke, M. R.en
dc.contributor.authorJezek, K.en
dc.contributor.authorLong, D.en
dc.contributor.authorUrbini, S.en
dc.contributor.authorFarness, K.en
dc.contributor.authorNeumann, T.en
dc.contributor.authorAlbert, M.en
dc.contributor.authorWinther, J.-G.en
dc.contributor.departmentNational Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USAen
dc.contributor.departmentENEA-CRE, Casaccia, Rome, Italyen
dc.contributor.departmentNational Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USAen
dc.contributor.departmentNational Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USAen
dc.contributor.departmentInstitute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlandsen
dc.contributor.departmentInstitute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlandsen
dc.contributor.departmentByrd Polar Research Center, The Ohio State University, Columbus, OH, USAen
dc.contributor.departmentDepartment of Electrical Engineering, Brigham Young University, Provo, UT, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentByrd Polar Research Center, The Ohio State University, Columbus, OH, USAen
dc.contributor.departmentNASA Goddard Space Flight Center, Greenbelt, MD, USAen
dc.contributor.departmentThayer School of Engineering, Dartmouth College, Hanover, NH, USAen
dc.contributor.departmentNorwegian Polar Institute, Tromsø, Norwayen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNational Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USA-
crisitem.author.deptENEA-CRE, Casaccia, Rome, Italy-
crisitem.author.deptNational Snow and Ice Data Center, University of Colorado, Boulder, Boulder, CO, USA-
crisitem.author.deptNational Snow and Ice Data Center, University of Colorado, Boulder CO 80309-0449, USA-
crisitem.author.deptInstitute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands-
crisitem.author.deptByrd Polar Research Center, The Ohio State University, Columbus, OH, USA-
crisitem.author.deptDepartment of Electrical Engineering, Brigham Young University, Provo, UT, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptByrd Polar Research Center, The Ohio State University, Columbus, OH, USA-
crisitem.author.deptNASA Goddard Space Flight Center, Greenbelt, MD, USA-
crisitem.author.deptThayer School of Engineering, Dartmouth College, Hanover, NH, USA-
crisitem.author.deptNorwegian Polar Institute, Tromsø, Norway-
crisitem.author.orcid0000-0002-8053-4197-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.classification.parent02. Cryosphere-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Glaze_extent_def.pdf6.89 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

48
checked on Feb 10, 2021

Page view(s) 5

511
checked on Apr 17, 2024

Download(s) 50

98
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric