Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8476
DC FieldValueLanguage
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMinelli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPignatelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2012-12-31T07:35:23Zen
dc.date.available2012-12-31T07:35:23Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8476en
dc.description.abstractIt is well known that the Ionian Sea is characterized by thin (8-11 km) crystalline crust, thick (5-7 km) sedimentary cover, and low heat flow, typical for a Mesozoic (at least) basin. Yet seismic data have not yielded univocal interpretations, and a debate has developed on the oceanic vs. “thinned continental” nature of the Ionian basin. Here we analyze the magnetic anomaly pattern of the Ionian Sea, and compare it to synthetic fields produced by a geopotential field generator, considering realistic crust geometry. The Ionian basin is mostly characterized by slightly negative magnetic residuals, and by a prominent positive (150 nT at sea level) “B” anomaly at the northwestern basin margin. We first test continental crust models, considering a homogeneous crystalline crust with K=1x10-3, then a 5 km thick deep crustal layer of serpentinite (K=1x10-1). First model yields insignificant anomalies, while the second gives an anomaly pattern anti-correlated with the observed residuals. We subsequently test oceanic crust models, considering a 2 km thick 2A basaltic layer with K=5x10-3, magnetic remanence of 5 A/m, and a unique magnetic polarity (no typical oceanic magnetic anomaly stripes are apparent in the observed data set). Magnetic remanence directions were derived from Pangean-African paleopoles in the 290-190 Ma age window. Only reverse-polarity models reproduce the B anomaly, and among them the 220-230 Ma models best approximate magnetic features observed on the abyssal plain and at the western basin boundary. The Ionian Sea turns out to be the oldest preserved oceanic floor known so far.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/117 (2012)en
dc.subjectionian seaen
dc.subjectneo-Tethysen
dc.subjectmagnetic anomaliesen
dc.subjectmagnetic modellingen
dc.subjectoceanic crusten
dc.titleThe Ionian Sea:The oldest in situ ocean fragment of the worlden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12101en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.identifier.doi10.1029/2012JB009475en
dc.relation.referencesArgnani, A. (2000), The southern Apennines-Tyrrhenian system within the kinematic frame of the central Mediterranean, Mem. Soc. Geol. Ital., 55, 115–122. Argnani, A., and C. Bonazzi (2005), Malta Escarpment fault zone offshore eastern Sicily: Pliocene-Quaternary tectonic evolution based on new multichannel seismic data, Tectonics, 24, TC4009, doi:10.1029/2004TC001656. Arisi Rota, F., and R. Fichera (1987), Magnetic interpretation related to geo-magnetic provinces: The Italian case history, Tectonophysics, 138, 179–196, doi:10.1016/0040-1951(87)90038-2. Baccheschi, P., L. Margheriti, M. S. Steckler, and E. Boschi (2011), Anisotropy patterns in the subducting lithosphere and in the mantle wedge: A case study–The southern Italy subduction system, J. Geophys. Res., 116, B08306, doi:10.1029/2010JB007961. Bayer, R., J.-L. Le Mouel, and X. Le Pichon (1973), Magnetic anomaly pattern in the western Mediterranean, Earth Planet. Sci. Lett., 19, 168–176, doi:10.1016/0012-821X(73)90111-8. Bosellini, A. (2002), Dinosaurs “re-write” the geodynamics of the eastern Mediterranean and the paleogeography of the Apulia Platform, Earth Sci. Rev., 59, 211–234, doi:10.1016/S0012-8252(02)00075-2. Cassinis, R., S. Scarascia, and A. Lozej (2003), The deep crustal structure of Italy and surrounding areas from seismic refraction data. A new synthesis, Ital. J. Geosci., 122, 365–376. Catalano, R., P. Di Stefano, and H. Kozur (1991), Permian circumpacific deep-water faunas from the western Tethys (Sicily, Italy)—New evidences for the position of the Permian Tethys, Palaeogeogr. Palaeoclimatol. Palaeoecol., 87, 75–108, doi:10.1016/0031-0182(91)90131-A. Catalano, R., P. Di Stefano, A. Sulli, and F. P. Vitale (1996), Paleogeography and structure of the central Mediterranean: Sicily and its offshore area, Tectonophysics, 260, 291–323, doi:10.1016/0040-1951(95)00196-4. Catalano, R., A. Franchino, S. Merlini, and A. Sulli (2000), A crustal section from the eastern Algerian basin to the Ionian ocean (central Mediterranean), Mem. Soc. Geol. Ital., 55, 71–85. Catalano, R., C. Doglioni, and S. Merlini (2001), On the Mesozoic Ionian Basin, Geophys. J. Int., 144, 49–64, doi:10.1046/j.0956-540X.2000.01287.x. Cernobori, L., A. Hirn, J. H. McBride, R. Nicolich, L. Petronio, M. Romanelli, and Streamers-Profiles Working Groups (1996), Crustal image of the Ionian basin and its Calabrian margin, Tectonophysics, 264, 175–189, doi:10.1016/ S0040-1951(96)00125-4. Chamot-Rooke, N., C. Rangin, and X. Le Pichon (Eds.) (2005), DOTMED— Deep Offshore Tectonics of the Mediterranean: A Synthesis of Deep Marine Data in Eastern Mediterranean, Mem. Soc. Geol. Fr., vol. 177, 64 pp., Soc. Geol. de Fr., Paris. Channell, J. E. T. (1992), Paleomagnetic data from Umbria (Italy): Implications for the rotation of Adria and Mesozoic apparent polar wander paths, Tectonophysics, 216, 365–378, doi:10.1016/0040-1951(92)90406-V. Channell, J. E. T., B. D’Argenio, and F. Horvarth (1979), Adria, the African promontory, in Mesozoic Mediterranean paleogeography, Earth Sci. Rev., 15, 213–292, doi:10.1016/0012-8252(79)90083-7. Chiappini, M., A. Meloni, E. Boschi, O. Faggioni, N. Beverini, C. Carmisciano, and I. Marson (2000), Shaded relief magnetic anomaly map of Italy and surrounding marine areas, Ann. Geofis., 43(5), 983–989. Chiarabba, C., L. Iovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251–268, doi:10.1016/j.tecto.2004.09.013. Chiarabba, C., P. De Gori, and F. Speranza (2008), The southern Tyrrhenian subduction zone: Deep geometry, magmatism and Plio-Pleistocene evolution, Earth Planet. Sci. Lett., 268, 408–423, doi:10.1016/j.epsl.2008.01.036. Ciarapica, G. (2007), Regional and global changes around the Triassic- Jurassic boundary reflected in the late Norian-Hettangian history of the Apennine basins, Palaeogeogr. Palaeoclimatol. Palaeoecol., 244, 34–51, doi:10.1016/j.palaeo.2006.06.022. D’Agostino, N., A. Avallone, D. Cheloni, E. D’Anastasio, S. Mantenuto, and G. Selvaggi (2008), Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113, B12413, doi:10.1029/ 2008JB005860. Del Ben, A., I. Finetti, F. Mongelli, and G. Zito (1994), Seismic and heat flow study of the southern Adriatic Sea, Boll. Geofis. Teor. Appl., 36, 29–44. Della Vedova, B., and G. Pellis (1989), New heat flow density measurements in the Ionian Sea, paper presented at VIII Convegno Nazionale, Gruppo Naz. di Geofis. Della Terra Solida, Rome. Dercourt, J., et al. (1986), Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias, Tectonophysics., 123, 241–315, doi:10.1016/0040-1951(86)90199-X. de Voogd, B., C. Truffert, N. Chamot-Rooke, P. Huchon, S. Lallemant, and X. Le Pichon (1992), Two-ship deep seismic soundings in the basins of the eastern Mediterranean Sea (Pasiphae cruise), Geophys. J. Int., 109, 536–552, doi:10.1111/j.1365-246X.1992.tb00116.x. Donzelli, G., and U. Crescenti (1970), Segnalazione di una microbiofacies permiana, probabilmente rimaneggiata, nella Formazione di M. Facito (Lucania occidentale), Boll. Soc. Natl. Napoli, 79, 13–19. Faccenna, C., T. W. Becker, F. P. Lucente, L. Jolivet, and F. Rossetti (2001), History of subduction and back-arc extension in the central Mediterranean, Geophys. J. Int., 145, 809–820, doi:10.1046/j.0956-540x.2001.01435.x. Favali, P., R. Funiciello, G. Mattietti, G. Mele, and F. Salvini (1993), An active margin across the Adriatic Sea (central Mediterranean Sea), Tectonophysics, 219, 109–117, doi:10.1016/0040-1951(93)90290-Z. Ferrucci, F., G. Gaudiosi, A. Hirn, and R. Nicolich (1991), Ionian Basin and Calabria Arc: Some new elements from DSS data, Tectonophysics, 195, 411–419, doi:10.1016/0040-1951(91)90223-F. Fichler, C., T. Odinsen, H. Rueslatten, O. Olesen, J. E. Vindstad, and S. Wienecke (2011), Crustal inhomogeneities in the northern North Sea from potential field modeling: Inherited structure and serpentinites?, Tectonophysics, 510, 172–185, doi:10.1016/j.tecto.2011.06.026. Finetti, I. (1982), Structure, stratigraphy and evolution of central Mediterranean, Boll. Geofis. Teor. Appl., 24, 247–315. Finetti, I., and C. Morelli (1973), Geophysical exploration of the Mediterranean Sea, Boll. Geofis. Teor. Appl., 15, 263–341. Finetti, I., F. Lentini, S. Carbone, S. Catalano, andA. DelBen (1996), Il sistema Appenninico Meridionale–Arco Calabro–Sicilia nel Mediterraneo Centrale: Studio geofisico–geologico, Ital. J. Geosci., 115, 529–559. Frizon de Lamotte, D., C. Raulin, N. Mouchot, J.-C. Wrobel-Daveau, C. Blanpied, and J.-C. Ringenbach (2011), The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes, Tectonics, 30, TC3002, doi:10.1029/ 2010TC002691. Gallais, F., M.-A. Gutscher, D. Graindorge, N. Chamot-Rooke, and D. Klaeschen (2011), A Miocene tectonic inversion in the Ionian Sea (central Mediterranean): Evidence from multichannel seismic data, J. Geophys. Res., 116, B12108, doi:10.1029/2011JB008505. Gallais, F., M.-A. Gutscher, D. Klaeschen, and D. Graindorge (2012), Two-stage growth of the Calabrian accretionary wedge in the Ionian Sea (Central Mediterranean): Constraints from depth-migrated multichannel seismic data, Mar. Geol., 326-328, 28–45. Gattacceca, J., and F. Speranza (2002), Paleomagnetism of Jurassic to Miocene sediments from the Apenninic carbonate platform (southern Apennines, Italy): Evidence for a 60 counterclockwise Miocene rotation, Earth Planet. Sci. Lett., 201, 19–34, doi:10.1016/S0012-821X(02)00686-6. Gattacceca, J., A. Deino, R. Rizzo, D. S. Jones, B. Henry, B. Beaudoin, and F. Vadeboin (2007), Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications, Earth Planet. Sci. Lett., 258, 359–377, doi:10.1016/j.epsl.2007.02.003. Gee, J., and D. V. Kent (1994), Variations in layer 2A thickness and the origin of the central anomaly magnetic high, Geophys. Res. Lett., 21, 297–300, doi:10.1029/93GL03422. Govers, R., and M. J. R. Wortel (2005), Lithosphere tearing at STEP faults: Response to edges of subduction zones, Earth Planet. Sci. Lett., 236, 505–523, doi:10.1016/j.epsl.2005.03.022. Gradstein, F. M., J. G. Ogg, and A. G. Smith (2005), A Geologic Time Scale 2004, Cambridge Univ. Press, Cambridge, U.K., doi:10.1017/CBO9780511536045. Grasso, M., and Z. Ben-Avraham (1992), Magnetic study of the northern margin of the Hyblean Plateau, southeastern Sicily: Structural implications, Ann. Tecton., 6, 202–213. Hatzfeld, D., M. Besnard, K. Makropoulos, and P. Hatzidimitriou (1993), Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications, Geophys. J. Int., 115, 799–818, doi:10.1111/j.1365-246X.1993.tb01493.x. Hieke, W., H. B. Hischleber, and G. A. Dehghani (2003), The Ionian Abyssal Plain (central Mediterranean Sea): Morphology, subbottom structures and geodynamic history—An inventory, Mar. Geophys. Res., 24, 279–310, doi:10.1007/s11001-004-2173-z. Hinz, K. (1974), Results of seismic refraction and seismic reflection measurements in the Ionian Sea, Geol. Jahrb., 2, 33–65. Hsü, K. J., et al. (1978), Site 374: Messina Abyssal Plain, Initial Rep. Deep Sea Drill. Proj., XLII, 175–217. Kent, D. V., and E. Irving (2010), Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics, J. Geophys. Res., 115, B10103, doi:10.1029/2009JB007205. Kent, D., and P. Olsen (1999), Astronomically tuned geomagnetic polarity timescale for the Late Triassic, J. Geophys. Res., 104, 12,831–12,841, doi:10.1029/1999JB900076. Lanza, R., and A. Meloni (2006), The Earth’s Magnetism: An Introduction for Geologists, Springer, New York. Makris, J., R. Nicolich, and W. Weigel (1986), A seismic study of the western Ionian Sea, Ann. Geophys., 6, 665–678. Malinverno, A., and W. B. F. Ryan (1986), Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227–245, doi:10.1029/TC005i002p00227. Mascle, J., and E. Chaumillon (1998), An overview of Mediterranean Ridge collisional accretionary complex as deduced from multichannel seismic data, Geo Mar. Lett., 18, 81–89, doi:10.1007/s003670050056. Maus, S., T. Sazonova, K. Hemant, J. D. Fairhead, and D. Ravat (2007), National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map, Geochem. Geophys. Geosyst., 8, Q06017, doi:10.1029/ 2007GC001643. Minelli, L., and C. Faccenna (2010), Evolution of the Calabrian accretionary wedge (central Mediterranean), Tectonics, 29, TC4004, doi:10.1029/ 2009TC002562. Montuori, C., G. B. Cimini, and P. Favali (2007), Teleseismic tomography of the southern Tyrrhenian subduction zone: New results from seafloor and land recordings, J. Geophys. Res., 112, B03311, doi:10.1029/ 2005JB004114. Morelli, C., M. Pisani, and C. Gantar (1975), Bathymetry, gravity and magnetism in the Strait of Sicily and in the Ionian Sea, Boll. Geofis. Teor. Appl., 17, 39–58. Müller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008), Age, spreading rates, and spreading asymmetry of the world’s ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743. Muttoni, G., D. V. Kent, and J. E. T. Channell (1996), Evolution of Pangea: Paleomagnetic constraints from the Southern Alps, Italy, Earth Planet. Sci. Lett., 140, 97–112, doi:10.1016/0012-821X(96)00038-6. Muttoni, G., D. V. Kent, E. Garzanti, P. Brack, N. Abrahamsen, and M. Gaetani (2003), Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’, Earth Planet. Sci. Lett., 215, 379–394, doi:10.1016/S0012-821X(03) 00452-7. Neri, G., B. Orecchio, C. Totaro, G. Falcone, and D. Presti (2009), Subduction beneath southern Italy close the ending: Results from seismic tomography, Seismol. Res. Lett., 80, 63–70, doi:10.1785/gssrl.80.1.63. Neri, G., A. M. Marotta, B. Orecchio, D. Presti, C. Totaro, R. Barzaghi, and A. Borghi (2012), How lithospheric subduction changes along the Calabrian Arc in southern Italy: Geophysical evidences, Int. J. Earth Sci., 101(7), 1949–1969, doi:10.1007/s00531-012-0762-7. Nicolosi, I., F. Speranza, and M. Chiappini (2006), Ultrafast oceanic spreading of the Marsili basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis, Geology, 34(9), 717–720, doi:10.1130/ G22555.1. Nicosia, U., M. Marino, N. Mariotti, C. Muraro, S. Panigutti, F. M. Petti, and E. Sacchi (2000), The late Cretaceous dinosaur tracksite near Altamura (Bari, southern Italy). I—Geological framework, Geol. Rom., 35, 231–236. Patacca, E., and P. Scandone (2007), Geology of the Southern Apennines, Boll. Soc. Geol. Ital., 7, 75–119. Patacca, E., R. Sartori, and P. Scandone (1990), Tyrrhenian basin and Apenninic arcs: Kinematic relations since Late Tortonian times, Mem. Soc. Geol. Ital., 45, 425–451. Pearce, F. D., S. Rondenay, M. Sachpazi, M. Charalampakis, and L. H. Royden (2012), Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone, J. Geophys. Res., 117, B07306, doi:10.1029/2011JB009023. Piana Agostinetti, N., and A. Amato (2009), Moho depth and Vp/Vs ratio in peninsular Italy from teleseismic receiver functions, J. Geophys. Res., 114, B06303, doi:10.1029/2008JB005899. Piana Agostinetti, N. P., M. S. Steckler, and F. P. Lucente (2009), Imaging the subducted slab under the Calabrian Arc, Italy, from receiver function analysis, Lithosphere, 1, 131–138, doi:10.1130/L49.1. Pignatelli, A., I. Nicolosi, R. Carluccio, M. Chiappini, and R. Von Frese (2011), Graphical interactive generation of gravity and magnetic fields, Comput. Geosci., 37, 567–572, doi:10.1016/j.cageo.2010.10.003. Polonia, A., A. Camerlenghi, F. Davey, and F. Storti (2002), Accretion, structural style, and syn-contractional sedimentation in the eastern Mediterranean Sea, Mar. Geol., 186, 127–144, doi:10.1016/S0025-3227(02) 00176-7. Polonia, A., L. Torelli, P. Mussoni, L. Gasperini, A. Artoni, and D. Klaeschen (2011), The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard, Tectonics, 30, TC5018, doi:10.1029/2010TC002821. Polonia, A., L. Torelli, L. Gasperini, and P. Mussoni (2012), Active faults and historical earthquakes in the Messina Straits area (Ionian Sea), Nat. Hazards Earth Syst. Sci., 12, 2311–2328, doi:10.5194/nhess-12-2311- 2012. Pullaiah, G., E. Irving, K. L. Buchan, and D. J. Dunlop (1975), Magnetization changes caused by burial and uplift, Earth Planet. Sci. Lett., 28, 133–143, doi:10.1016/0012-821X(75)90221-6. Reston, T. J., R. von Huene, T. Dickmann, D. Klaeschen, and H. Kopp (2002), Frontal accretion along the western Mediterranean Ridge: The effect of the Messinian evaporites on wedge mechanics and structural style, Mar. Geol., 186, 59–82, doi:10.1016/S0025-3227(02)00173-1. Robertson, A. H. F., K.-C. Emeis, C. Richter, and A. Camerlenghi (Eds.) (1998), Proceedings Ocean Drilling Program Scientific Results, vol. 160, Ocean Drill. Program, College Station, Tex., doi:10.2973/odp.proc. sr.160.1998. Rochette, P. (1994), Comments on “Anisotropic magnetic susceptibility in the continental lower crust and its implication for the shape of magnetic anomalies” by G. Florio et al., Geophys. Res. Lett., 21, 2773–2774, doi:10.1029/94GL02443. Rosenbaum, G., and G. S. Lister (2004), Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides, Tectonics, 23, TC1013, doi:10.1029/2003TC001518. Rossi, S., and R. Sartori (1981), A seismic reflection study of the external Calabrian Arc in the northern Ionian Sea (eastern Mediterranean), Mar. Geophys. Res., 4, 403–426, doi:10.1007/BF00286036. Roure, F., P. Casero, and B. Addoum (2012), Alpine inversion of the North African margin and delamination of its continental lithosphere, Tectonics, 31, TC3006, doi:10.1029/2011TC002989. Ryan, W. B. F., et al. (2009), Global Multi-Resolution Topography synthesis, Geochem. Geophys. Geosyst., 10, Q03014, doi:10.1029/2008GC002332. Scarascia, S., A. Lozej, and R. Cassinis (1994), Crustal structures of the Ligurian, Tyrrhenian, and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles, Boll. Geofis. Teor. Appl., 36, 5–19. Selvaggi, G., and C. Chiarabba (1995), Seismicity and P-wave velocity image of the southern Tyrrhenian subduction zone, Geophys. J. Int., 121, 818–826, doi:10.1111/j.1365-246X.1995.tb06441.x. Shive, P. N., R. J. Blakely, B. R. Frost, and D. M. Fountain (1992), Magnetic properties of the lower continental crust, in Continental Lower Crust, edited by D. M. Fountain, R. Arculus, and R. W. Kay, pp. 145–177, Elsevier Sci., New York. Sioni, S. (1996), Mer Ionienne et Apulie depuis l’ouverture de l’Ocean Alpin, PhD thesis, Univ. de Bretagne Occidentale, Brest, France. Speranza, F., and M. Chiappini (2002), Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis, J. Geophys. Res., 107(B11), 2290, doi:10.1029/2000JB000027. Speranza, F., I. Villa, L. Sagnotti, F. Florindo, D. Cosentino, P. Cipollari, and M. Mattei (2002), Age of the Corsica-Sardinia rotation and Liguro- Provencal Basin spreading: New paleomagnetic and 40Ar/39Ar evidence, Tectonophysics, 347, 231–251, doi:10.1016/S0040-1951(02)00031-8. Stampfli, G. M., and G. D. Borel (2002), A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones, Earth Planet. Sci. Lett., 196, 17–33, doi:10.1016/S0012-821X(01)00588-X. Torsvik, T. H., R. D. Muller, R. Van der Voo, B. Steinberger, and C. Gaina (2008), Global plate motion frames: Toward a unified model, Rev. Geophys., 46, RG3004, doi:10.1029/2007RG000227. Truffert, C., N. Chamot-Rooke, S. Lallemant, B. de Voogd, P. Huchon, and X. Le Pichon (1993), The crust of the Western Mediterranean Ridge from deep seismic data and gravity modelling, Geophys. J. Int., 114, 360–372, doi:10.1111/j.1365-246X.1993.tb03924.x. Van der Voo, R. (1993), Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans, Cambridge Univ. Press, New York. von Huene, R., T. Reston, N. Kukowsi, G. A. Dehghani, and W. Weinrebe, and IMERSE Working Group (1997), A subducting seamount beneath the Mediterranean Ridge, Tectonophysics, 271, 249–261, doi:10.1016/ S0040-1951(96)00241-7. Wasilewski, P. J., and M. A. Mayhew (1992), The Moho as a magnetic boundary, Geophys. Res. Lett., 19, 2259–2262, doi:10.1029/92GL01997.en
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorSperanza, F.en
dc.contributor.authorMinelli, L.en
dc.contributor.authorPignatelli, A.en
dc.contributor.authorChiappini, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0002-9395-3905-
crisitem.author.orcid0000-0002-3172-2044-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Speranza et al., 2012.pdfmain article1.8 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

59
checked on Feb 10, 2021

Page view(s) 20

1,132
checked on Apr 17, 2024

Download(s)

70
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric