Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8314
DC FieldValueLanguage
dc.contributor.authorallChini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPiscini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCinti, F. R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallAmici, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallNappi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDe Martini, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2012-10-19T13:51:06Zen
dc.date.available2012-10-19T13:51:06Zen
dc.date.issued2013-03en
dc.identifier.urihttp://hdl.handle.net/2122/8314en
dc.description.abstractWe studied the disastrous effects of the tsunami triggered by the Mw 9.0 earthquake that occurred on 11 March 2011 offshore the Honshu island (Japan). The tsunami caused a huge amount of casualties and severe damage along most of the eastern coastline of the island. The dataset used is composed of images from ASTER (visible and thermal) and ENVISAT SAR sensors. The processing and the analysis of data from different sources were performed in order to obtain the tsunami inundation map of the Sendai coastal area, to analyze inland factors driving the tsunami inundation, and to detect the liquefaction effects in the Chiba bay area as well. The obtained inundation line, with a maximum value of about 6 km, has been jointly analyzed with DEM providing the run-up values, which are generally below 21 m in the ca. 60-km-long study area of Sendai. The analysis highlights that the coastal topography influences the inundation process: high-relief zones record the lowest inundation distances, while within the plain the waves entered inland for at least 4 km. We did not observe significant direct effects of the vegetation cover on the inland water penetration along the whole investigated area, nor of the different orientation of the coastline. Moreover, from SAR coherence and intensity correlation a wide area of subsidence is mapped at Chiba bay, which is reasonably related to strong ground shaking and pervasive liquefaction.en
dc.language.isoEnglishen
dc.publisher.nameIEEE / Institute of Electrical and Electronics Engineers Incorporateden
dc.relation.ispartofIEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Societyen
dc.relation.ispartofseries2/10 (2013)en
dc.subject2011 Japan tsunamien
dc.subjectwave inundationen
dc.subjectliquefactionen
dc.subjectSAR, Optical and Thermal dataen
dc.titleThe 2011 Tohoku-Oki (Japan) tsunami inundation and liquefaction investigated through optical, thermal and SAR dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber347-351en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.1109/LGRS.2012.2205661en
dc.relation.references[1] K. Yoshida, K. Miyakoshi, and K. Irikura, "Source Process of the 2011 Off the Pacific Coast of Tohoku Earthquake Inferred from Waveform Inversion with Long-Period Strong-Motion Records,” Earth Planets Space, vol. 63, pp. 577-582, 2011. [2] K. Goto, C. Chagué-Goff, S. Fujino, J. Goff, B. Jaffe, Y. Nishimura, B. Richmond, D. Sugawara, W. Szczuciński, D. R. Tappin, R. Witter, and F. Yulianto, “New insights of tsunami hazard from the 2011 Tohoku-oki event,” Marine Geology, doi: 10.1016/j.margeo.2011.10.004 [3] S. Stramondo, C. Bignami, M. Chini, N. Pierdicca, and A. Tertulliani, “Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies,” Int. J. Remote Sens., vol. 27, no. 20, pp. 4433–4447, 2006. [4] M. Chini, F. R. Cinti, and S. Stramondo, “Co-seismic surface effects from very high resolution panchromatic images: the case of the 2005 Kashmir (Pakistan) earthquake,” Nat. Hazards Earth Syst. Sci., vol. 11, no. 3, pp. 931-943, 2011.[5] F. Dell’Acqua, C. Bignami, M. Chini, G. Lisini, D. Polli, and S. Stramondo, “Earthquake rapid mapping by satellite remote sensing data: L’Aquila April 6th, 2009 event,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4, no. 4, pp. 935- 943, 2011. [6] N. Pierdicca, M. Chini, L. Pulvirenti, and F. Macina, "Integrating Physical and Topographic Information into a fuzzy scheme to Map Flooded Area by SAR," Sensors, vol. 8, pp. 4151–4164, 2008. [7] L. Pulvirenti, N. Pierdicca, M. Chini, and L. Guerriero, "An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data based on the fuzzy logic," Nat. Hazards Earth Syst. Sci., vol. 11, pp. 529-540, 2011. [8] L. Pulvirenti, M. Chini, N. Pierdicca, L. Guerriero, and P. Ferrazzoli, "Flood monitoring using multi-temporal COSMO-SkyMed data: image segmentation and signature interpretation," Remote Sens. Environ., vol. 115, pp. 990-1002, 2011. [9] F. Bovolo, and L. Bruzzone, “A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1658.1670, 2007. [10] M. Chini, C. Bignami, S. Stramondo and N. Pierdicca, “Uplift and subsidence due to the 26 December 2004 Indonesian earthquake detected by SAR data,” Int. J. Remote Sens., vol. 29, no. 13, pp. 3891– 3910, 2008. [11] C. C. Liu, J. G. Liu, C. W. Lin, A. M. Wu, S. H. Liu, and C. L. Shieh, “Image processing of FORMOSAT‐2 data for monitoring the South Asia tsunami,” Int. J. Remote Sens., vol. 28, no. 13–14, pp. 3093–3111, 2007. [12] A. S. Belward, H. J. Stibig, H. Eva, F. Rembold, T. Bucha, A. Hartley, R. Beuchle, D. Khudhairy, M. Michielon, and D. Mollicone, “Mapping severe damage to land cover following the 2004 Indian Ocean tsunami using moderate spatial resolution satellite imagery,” Int. J. Remote Sens., vol. 28, no. 13–14, pp. 2977–2994, 2007. [13] M. D. Yang, T. C. Su, C. H. Hsu, K. C. Chang, and A. M. Wu, “Mapping of the 26 December 2004 tsunami disaster by using FORMOSAT‐2 images,” Int. J. Remote Sens., vol. 28, no. 13-14, pp. 3071–3091, 2007. [14] B. G. McAdoo, N. Richardson, and J. Borrero, “Inundation distances and run-up measurements from ASTER, QuickBird and SRTM data, Aceh coast, Indonesia,” Int. J. Remote Sens., vol. 28, no. 13-14, pp. 2961-2975, 2007. [15] T. T. Vu, M. Matsuoka, and F. Yamazaki, “Dual‐scale approach for detection of tsunami‐affected areas using optical satellite images,” Int. J. Remote Sens., vol. 28, no. 13–14, pp. 2995–3011, 2007. [16] K. Kouchi, and F. Yamazaki, “Characteristics of Tsunami-Affected Areas in Moderate-Resolution Satellite Images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1650 – 1657, 2007. [17] R. Seiler, J. Schmidt, O. Diallo, And E. Csaplovics, “Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data,” J. Environ. Manage., vol. 90, no. 7, pp. 2121-2129, 2009. [18] H. Bayraktar, and B. Bayram, “Fuzzy logic analysis of flood disaster monitoring and assessment of damage in SE Anatolia Turkey,” 4th International Conference on Recent Advances in Space Technologies 2009, pp. 13-17, 2009. [19] A. Rosema, and J. L. Fiselier, “Meteosat-based evapotranspiration and thermal inertia mapping for monitoring transgression in the Lake Chad region and Niger Delta,” Int. J. Remote Sens., vol. 11, no. 5, pp. 741- 752, 1990. [20] A. Singh, “Digital change detection techniques using remotely sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003, 1989. [21] T. G. Farr, et al., “The Shuttle Radar Topography Mission,” Rev. Geophys., 45, RG2 004, 2007. [22] J. S. Lee, "Digital Image Enhancement and Noise Filtering by Use of Local Statistics," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAM1-2, no. 2, 1980. [23] Geospatial Information Authority of Japan (GSI), http://www.gsi.go.jp/kikaku/kikaku60003.html. [24] GEO's Tohoku-oki Event Supersite Website, http://supersites.earthobservations.org/sendai.php. [25] The International Charter, Space and Major Disasters, http://www.disasterscharter.org/web/charter/activation_details?p_r_p_14 15474252_assetId=ACT-359.[26] M. Chini, L. Pulvirenti, and N. Pierdicca, “Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan tsunami,” IEEE Geosci. Remote Sens. Lett, vol. 9, no. 3, pp. 467-471, 2012. [27] Intergovernmental Oceanographic Commission. 2008. Tsunami Glossary, 2008. Paris, UNESCO. IOC Technical Series, 85. [28] T. Tachikawa, M. Kaku, A. Iwasaki, D. Gesch, M. Oimoen, Z. Zhang, J. Danielson, T. Krieger, B. Curtis, J. Haase, M. Abrams, R. Crippen, and C. Carabajal, “ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results,” August 31, 201, http://asterweb.jpl.nasa.gov/gdem.asp. [29] E. Lekkas, E. Andreadakis, I. Kostaki, and E. Kapourani, “Critical Factors for Run-up and Impact of the Tohoku Earthquake Tsunami,” International Journal of Geosciences, vol. 2, pp. 310-317, 2011. [30] N. Mori, T. Takahashi, T. Yasuda, and H. Yanagisawa, “Survey of 2011 Tohoku earthquake tsunami inundation and run-up,” Geophysical Research Letters, vol. 38, L00G14, 2011. [31] T. Kishida, “Phase 1: Liquefaction Damages on Reclamation Lands In Chiba Bay Area After Tohoku Pacific Coast Earthquake On March 11, 2011,” freesia.arch.ues.tmu.ac.jp/TohokuEQ2011/201103/msg48.1.pdf. [32] H. A. Zebker, and J. Villasenor, “Decorrelation in interferometric radar echoes,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 5, pp. 950–959, 1992.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1545-598Xen
dc.relation.eissn1558-0571en
dc.contributor.authorChini, M.en
dc.contributor.authorPiscini, A.en
dc.contributor.authorCinti, F. R.en
dc.contributor.authorAmici, S.en
dc.contributor.authorNappi, R.en
dc.contributor.authorDe Martini, P. M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLuxembourg Institute of Science and Technology (LIST)-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-5545-3611-
crisitem.author.orcid0000-0003-1068-3223-
crisitem.author.orcid0000-0003-2410-646X-
crisitem.author.orcid0000-0002-1552-4398-
crisitem.author.orcid0000-0002-3598-5191-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Chini_et_al_IEEE_GRSL_RunUpJapan_Final_bacheca.pdf4.43 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

29
checked on Feb 10, 2021

Page view(s) 20

598
checked on Apr 17, 2024

Download(s)

39
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric