Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8312
DC FieldValueLanguage
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallLowenstern, J. B.; US Geological Survey, Menlo Park, CA, USAen
dc.contributor.authorallEvans, W. C.; US Geological Survey, Menlo Park, CA, USAen
dc.contributor.authorallBergfeld, D.; US Geological Survey, Menlo Park, CA, USAen
dc.contributor.authorallTassi, F.; Department of Earth Sciences, University of Florence, Florence, Italyen
dc.contributor.authorallTedesco, D.; Department of Environmental Sciences, University of Napoli 2, Italyen
dc.date.accessioned2012-10-19T13:44:29Zen
dc.date.available2012-10-19T13:44:29Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8312en
dc.description.abstractThe chemistry of Yellowstone fumarole gases shows the existence of two component waters, type MC, influenced by the addition of deep mantle fluid, and type CC, influenced by crustal interactions (CC). MC is high in 3He/4He (22 Ra) and low in 4He/40Ar ( 1), reflecting input of deep mantle components. The other water is characterized by 4He concentrations 3–4 orders of magnitude higher than air-saturated meteoric water (ASW). These high He concentrations originate through circulation in Pleistocene volcanic rocks, as well as outgassing of Tertiary and older (including Archean) basement, some of which could be particularly rich in uranium, a major 4He source. Consideration of CO2–CH4–CO–H2O–H2 gas equilibrium reactions indicates equilibration temperatures from 170 C to 310 C. The estimated temperatures highly correlate with noble-gas variations, suggesting that the two waters differ in temperature. Type CC is 170 C whereas the MC is hotter, at 340 C. This result is similar to models proposed by previous studies of thermal water chemistry. However, instead of mixing the deep hot component simply with cold, meteoric waters we argue that addition of a 4He-rich component, equilibrated at temperatures around 170 C, is necessary to explain the range in fumarole gas chemistry.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofGeochimica et cosmochimica actaen
dc.relation.ispartofseries/89 (2012)en
dc.subjecthydrothermal fluidsen
dc.subjectYellowstone Plateauen
dc.titleInsights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateauen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber265–278en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1016/j.gca.2012.04.051en
dc.relation.referencesAllen E. T. and Day A. L. (1935) Hot Springs of the Yellowstone National Park. Carnegie Institution of Washington, Washington,hot spring waters of Yellowstone National Park. Geochim. Cosmochim. Acta 58, 5401–5419. Fournier R. O., Truesdell A. H. and Kennedy B. M. (1989) Hydrologic model to account for variations in 3He/4He in thermal waters throughout Yellowstone National Park, Wyoming. International Geologic Congress, 28th, Washington, D.C. Abstracts, 1 503. GardnerW. P., Susong D. D., Solomon D. K. andHeaslerH. P. (2010) Using noble gasesmeasured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A. J. Volcanol. Geotherm. Res. 198, 394–404. GiggenbachW. F. (1975)Asimplemethod for the collection and analysis of volcanic gas samples. Bull. Volcanologique 39, 132–145. Giggenbach W. F. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Acta 44, 2021–2032. Giggenbach W. F. (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161. Giggenbach W. F. (1992) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Int. Symp. Water-Rock Interact. 7, 873–878. Giggenbach W. F. and Goguel R. L. (1989) Collection and analysis of geothermal volcanic water and gas discharges. Chemistry Division, DSIR, New Zealand. Report no. CD 2401. Giggenbach W. F. and Matsuo S. (1991) Evaluation of results from Second and Third IAVCEI field workshops on Volcanic gases, Mt. Usu, Japan, and White Island, New Zealand. Appl. Geochem. 6, 125–141. Giggenbach W. F. and Poreda R. J. (1993) Helium isotopic and chemical composition of gases from volcanic-hydrothermal systems in the Philippines. Geothermics 22, 369–380. http:// dx.doi.org/10.1016/0375-6505(93)90025-I. Graham D. W. (2002) Noble gas isotope geochemistry of midocean ridge and ocean island basalts: characterization of mantle source reservoirs. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47 (eds. D. Porcelli, C. J. Ballentine and R. Wieler). Reviews In Mineralogy & Geochemistry. Mineralogical Society of America, Washington, DC. pp. 247–317. Hague A. (1911) Origin of the thermal waters in the Yellowstone National Park. Bull. Geol. Soc. Am. 22, 103–122. Husen S., Smith R. B. and Waite G. P. (2004) Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 131, 397–410. Inguaggiato S. and Rizzo A. (2004) Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water reequilibration and its application to Stromboli volcanic system. Appl. Geochem. 19, 665–673. http://dx.doi.org/10.1016/ j.apgeochem.2003.10.009. Kennedy B. M., Lynch M. A., Reynolds J. H. and Smith S. P. (1985) Intensive sampling of noble gases in fluids at Yellowstone; I, Early overview of the data; regional patterns. Geochim. Cosmochim. Acta 49, 1251–1261. Kennedy B. M., Reynolds J. H. and Smith S. P. (1987) Helium isotopes; Lower Geyser Basin, Yellowstone National Park. J. Geophys. Res. 92, 12477–12489. Lowenstern J. B., Bergfeld D., Evans W. C. and Hurwitz S. (2012) Generation and evolution of hydrothermal fluids at Yellowstone: insights from the Heart Lake Geyser Basin. Geochem. Geophys. Geosyst.. http://dx.doi.org/10.1029/2011GC003835. Lowenstern J. B. and Hurwitz S. (2008) Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone Caldera. Elements 4, 35–40. Mariner R. H., Evans W. C. and Young H. W. (2006) Comparison of circulation times of thermal waters discharging from the Idaho batholith based on geothermometer temperatures, helium concentrations, and 14C measurements. Geothermics 35, 3–25. Marty B. (1995) Nitrogen content of the mantle inferred from N2– Ar correlation in oceanic basalts. Nature 377, 326–328. Marty B. and Dauphas N. (2003) The nitrogen record of crust– mantle interaction and mantle convection from Archean to present. Earth Planet. Sci. Lett. 206, 397–410. http://dx.doi.org/ 10.1016/S0012-821X(03)00506-5. Marty B. and Zimmermann L. (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta 63, 3619. http://dx.doi.org/10.1016/S0016- 7037(99)00169-6. McKenzie W. F. and Truesdell A. H. (1977) Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes. Geothermics 5, 51–61. Moreira M., Kunz J. and Alle`gre C. (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181. http://dx.doi.org/10.1126/ science.279.5354.1178. Morgan P., Blackwell D. D. and Spafford R. E. (1977) Heat flow measurements in Yellowstone Lake and the thermal structure of the Yellowstone caldera. J. Geophys. Res. 82, 3719–3732. Nelson S. T. (2000) A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Commun. Mass Spectrom. 14, 1044–1046. http://dx.doi.org/10.1002/1097-0231(20000630) 14:12<1044:AID-RCM987>3.0.CO;2-3. Ozima M. and Podosek F. A. (2002) Noble Gas Geochemistry. Cambridge University Press, UK. Rye R.O. and Truesdell A.H. (2007) The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park. In Integrated geoscience studies in the greater Yellowstone area; volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem (ed. L.A. Morgan). U.S. Geological Survey Professional Paper 1717, pp. 235–270. Sturchio N. C., Bohlke J. K. and Binz C. M. (1989) Radium– thorium disequilibrium and zeolite–water ion exchange in a Yellowstone hydrothermal environment. Geochim. Cosmochim. Acta 53, 1025–1034. Trieloff M., Kunz J., Clague D. A., Harrison D. and Alle`gre C. J. (2000) The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038. http://dx.doi.org/10.1126/science. 288.5468.1036. Truesdell A. H. and Fournier R. O. (1976) Conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming. U.S. Geological Survey Open-File Report 76-428, pp. 22. Werner C. and Brantley S. (2003) CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061. http://dx.doi.org/10.1029/2002GC000473. White D. E., Fournier R. O., Muffler L. J. P., and Truesdell A. H. (1975) Physical results of research drilling in thermal areas of Yellowstone National Park, Wyoming. U.S. Geological Survey Professional Paper 892, pp. 70. Zelt R. B., Boughton G., Miller K. A., Mason J. P., and Gianakos L. M. (1999) Environmental Setting of the Yellowstone River Basin, Montana, North Dakota, and Wyoming. U.S. Geological Survey Water-Resources Investigations Report 98-4269, pp. 113. DC (Publication 466, pp. 525). Bergfeld D. B., Lowenstern J. B., Hunt A. G., Shanks W.C., III, and Evans W. C. (2011) Gas and Isotope Chemistry of Thermal Features in Yellowstone National Park, Wyoming. U.S. Geological Survey Scientific Investigations, Report 2011-5012. Burnard P., Graham D. and Turner G. (1997) Vesicle-specific noble gas analyses of ’’popping rock’’: implications for primordial noble gases in earth. Science 276, 568–571. Caliro S., Chiodini G., Moretti R., Avino R., Granieri D., Russo M. and Fiebig J. (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 71, 3040–3055. http://dx.doi.org/10.1016/j.gca.2007.04.007. Chiodini G., Avino R., Caliro S. and Minopoli C. (2011) Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei). Ann. Geophys. 54, 151–160. http:// dx.doi.org/10.4401/ag-5002. Chiodini G., Brombach T., Caliro S., Cardellini C., Marini L. and Dietrich V. (2002) Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece). Geophys. Res. Lett. 29, 1759–1763. http://dx.doi.org/10.1029/2001GL014355. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Cioni R. and Corazza E. (1981) Medium-temperature fumarolic gas sampling. Bull. Volcanologique 44, 23–29. Clark J. F. and Turekian K. K. (1990) Time scale of hydrothermal water-rock reactions in Yellowstone National Park based on radium isotopes and radon. J. Volcanol. Geotherm. Res. 40, 169–180. Craig H. (1963) The isotopic geochemistry of water and carbon in geothermal areas. Proc. Conf. Nucl. Geol. Geotherm. Areas. Craig H., Boato G. and White D. E. (1956) The isotopic geochemistry of thermal waters. Nuclear processes in geological settings. Nat. Res. Council Nucl. Sci. Ser. Rep. 19, 29–44. Craig H., Lupton J. E., Welhan J. A. and Poreda R. (1978) Helium isotope ratios in Yellowstone and Lassen Park volcanic gases. Geophys. Res. Lett. 5, 897–900. D’Amore F. and Panichi C. (1980) Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochim. Cosmochim. Acta 44, 549–556. Epstein S. and Mayeda T. (1953) Variation of O-18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224. Evans W. C., Bergfeld D., van Soest M. C., Huebner M. A., Fitzpatrick J. and Revesz K. M. (2006) Geochemistry of lowtemperature springs northwest of Yellowstone caldera; seeking the link between seismicity, deformation, and fluid flow. J. Volcanol. Geotherm. Res. 154, 169–180. Fournier R. O. (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu. Rev. Earth Planet. Sci. 17, 13–53. Fournier R. O., Kennedy B. A., Aoki M. and Thompson J. M. (1994) Correlation of gold in siliceous sinters with 3He/4He inen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0016-7037en
dc.relation.eissn1872-9533en
dc.contributor.authorChiodini, G.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorLowenstern, J. B.en
dc.contributor.authorEvans, W. C.en
dc.contributor.authorBergfeld, D.en
dc.contributor.authorTassi, F.en
dc.contributor.authorTedesco, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentUS Geological Survey, Menlo Park, CA, USAen
dc.contributor.departmentUS Geological Survey, Menlo Park, CA, USAen
dc.contributor.departmentDepartment of Earth Sciences, University of Florence, Florence, Italyen
dc.contributor.departmentDepartment of Environmental Sciences, University of Napoli 2, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUS Geological Survey, Menlo Park, CA, USA-
crisitem.author.deptUS Geological Survey, Menlo Park, CA, USA-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0003-0464-7779-
crisitem.author.orcid0000-0002-3319-4257-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
chiocal (2012).pdf1.07 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

24
checked on Feb 10, 2021

Page view(s) 50

186
checked on Apr 24, 2024

Download(s)

29
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric