Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Albert, P. G.*
Tomlinson, E. L.*
Smith, V. C.*
Di Roberto, A.*
Todman, A.*
Rosi, M.*
Marani, M.*
Muller, W.*
Menzies, M. A.*
Title: Marine-continental tephra correlations: Volcanic glass geochemistry from the Marsili Basin and the Aeolian Islands, Southern Tyrrhenian Sea, Italy
Title of journal: Journal of volcanology and geothermal research
Series/Report no.: /229-230(2012)
Publisher: Elsevier Science Limited
Issue Date: 1-Jun-2012
DOI: 10.1016/j.jvolgeores.2012.03.009
Keywords: Marsili Basin
Glass chemistry
Trace element
Aeolian Islands
Abstract: Major, minor and trace element analysis of volcanic glass in proximal and distal (< 2 mm) tephra deposits underpins tephrochronology. This approach has been tested in the Aeolian Islands and the Tyrrhenian Sea using juvenile clasts in pyroclastic fall and flow deposits. Geochemical data are used to link marine tephras in the Marsili Basin (core TIR2000-C01) to explosive eruptions of (1) Lipari (Monte Pilato; 776 cal AD); (2) Vulcano; and (3) Campi Flegrei (Soccavo 1; 11,915–12,721 cal years BP). Whether a polymictic coarse grained volcaniclastic turbidite in the Marsili Basin originated from collapse on Salina remains unresolved because multi-elemental analysis raises doubt about the published correlation to the Pollara region. It is evident that correlation of proximal continental and distal marine tephras, at a high level of confidence, requires a full complement of major, minor and trace element data. In conjunction with considerations of the mineralogy and morphology of juvenile deposits these data help define petrological lineages such that precise provenance can be established. Whilst a precise proximal–distal match must be based on identical major, minor and trace element concentrations it is clear that resurgent activity from a single volcano can produce magmas with identical compositions. In such cases stratigraphic relationships must complement any geochemical study. Occasionally proximal stratigraphies may be unrepresentative of the complete eruptive history because of a lack of exposure due to burial by more recent effusive and explosive activity, or sector collapse which can remove vital stratigraphy particularly on volcanic islands.
Appears in Collections:04.04.08. Sediments: dating, processes, transport
04.08.05. Volcanic rocks
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
JVGR_Albert_etal_2012.pdf2.49 MBAdobe PDFonly authorized users View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA