Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8300
DC FieldValueLanguage
dc.contributor.authorallLetort, J.; ISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.en
dc.contributor.authorallRoux, P.; ISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.en
dc.contributor.authorallVandemeulebrouck, J.; ISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Université de Savoie, Chamb´ery, Franceen
dc.contributor.authorallCoutant, O.; ISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.en
dc.contributor.authorallCros, E.; ISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e de Savoie, Chamb´ery, Franceen
dc.contributor.authorallWathelet, M.; Dipartimento di Scienze della Terra, Universit`a di Perugia, Perugia, Italyen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Universit`a di Perugia, Perugia, Italyen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2012-10-19T13:08:52Zen
dc.date.available2012-10-19T13:08:52Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8300en
dc.description.abstractThe Solfatara is one of the major volcanoes of the Phlegrean Fields (Campi Flegrei) volcanic complex, and it is located in a densely populated area a few kilometres west of the city of Naples. It is an active resurgent caldera that has been characterized by a rich history of surface–ground deformation and soil diffuse degassing and fumarolic emissions, which are indications of the top of a hydrothermal plume. A seismic survey was completed in May 2009 for the characterization of the main subsurface features of the Solfatara. Using the complete data set, we have carried out surface wave inversion with high spatial resolution. A classical minimization of a least-squares objective function was first computed to retrieve the dispersion curves of the surface waves. Then, the fitting procedure between the data and a three-sedimentlayer forward model was carried out (to a depth of 7 m), using an improved version of the neighbourhood algorithm. The inversion results indicate a NE-SW fault, which is not visible at the surface. This was confirmed by a temperature survey conducted in 2010. A passive seismic experiment localized the ambient noise sources that correlate well with the areas of high CO2 flux and high soil temperatures. Finally, considering that the intrinsic attenuation is proportional to the frequency, a centroid analysis provides an overview of the attenuation of the seismic waves, which is closely linked to the petrophysical properties of the rock. These different approaches that merge complete active and passive seismic data with soil temperature and CO2 flux maps confirm the presence of the hydrothermal system plume. Some properties of the top of the plume are indicated and localized.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/189(2012)en
dc.subjectInverse theoryen
dc.subjectTomographyen
dc.subjectHydrothermal systemsen
dc.subjectEuropeen
dc.titleHigh-resolution shallow seismic tomography of a hydrothermal area: application to the Solfatara, Pozzuolien
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1725–1733en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1111/j.1365-246X.2012.05451.xen
dc.relation.referencesBensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N. & Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260, doi:10.1111/j.1365- 246X.2007.03374.x. Berrino, G., Corrado, G., Luongo, G. & Toro, B., 1984. Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift, Bull. Volcanol., 47, 187–200. Berrino, G., Corrado, G. & Riccardi, U., 1998. Sea gravity data in the gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area, J. Volcanol. Geochem. Res., 82, 139–150, doi:10.1016/S0377- 0273(97)00061-9. Brajanovski, M., Muller, T.M. & Gurevich, B., 2006. Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media, Geophys. J. Int., 166, 574–578, doi:10.1111/j.1365- 246X.2006.03068.x. Bruno, P.P.G., Ricciardi, G.P., Petrillo, Z., Di Fiore, V., Troiano, A. & Chiodini G., 2007. Geophysical and hydrogeological experiments from a shallow hydrothermal system at Solfatara Volcano, Campi Flegrei, Italy: response to caldera unrest, J. geophys. Res., 112, B6–B06201, doi:10.1029/2006JB004383. Chiodini, G., Marini, L. & Russo, M., 2001. Geochemical evidence of high temperature hydrothermal brines at Vesuvio volcano (Italy), Geochim. Cosmochim. Acta, 65, 2129–2147, doi:10.1016/S0016- 7037(01)00583-X. Chiodini, G., Granieri, D., Avino, R., Caliro, S. & Costa, A., 2005. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems, J. geophys. Res., 110, B8–B08204, doi:10.1029/2004JB003542. Cros, E., Roux, P., Vandemeulebrouck, J. & Kedar, S., 2011. Locating hydrothermal acoustic sources at old faithful geyser using matched-field processing, Geophys. J. Int., 187, 385–393. De Siena, L., Del Pezzo, E. & Bianco, F., 2010. Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins, and feeding systems, J. geophys. Res., 115, B09312, doi:10.1029/2009JB006938. Dvorak, J.J. & Mastrolorenzo, G., 1991. The Mechanisms of Recent Vertical Crustal Movements in Campi Flegrei Caldera, Southern Italy, Geol. Soc. Am. Spec. Paper. 263, Geological Society of America, Boulder, CO, 47pp. Gouedard, P. et al., 2008. Cross-correlation of random fields: mathematical approach and applications, Geophys. Prospect., 56, 375–393. Johnston, M.J.S., Mueller, R.J. & Dvorak, J., 1981. Volcano-magnetic observations during eruptions of Mt. St. Helens, May-August 1980, U.S. Geol. Surv. Prof. Paper, 1250, 183–192. Kieffer, S.W. & Sturtevant, B., 1984. Laboratory studies of volcanic jets, J. geophys. Res., 89, 8253–8268, doi:10.1029/JB089iB10 p08253. Kedar, S. & Kanamori, H., 1996. Continuous monitoring of seismic energy release associated with the 1994 Northridge earthquake and the 1992 Landers earthquake, Bull. seism. Soc. Am., 8, 255–258. Lei, X.L. & Xue, Z.Q., 2009. Ultrasonic velocity and attenuation during CO2 injection intowater-saturated porous sandstone:measurements using difference seismic tomography, Phys. Earth Planet. Inter., 176, 224–234, doi:10.1016/j.pepi.2009.06.001. Madonia, P., Federico, C., Cusano, P., Petrosino, S., Aiuppa, A. & Gurrieri, S., 2008. Crustal dynamics of Mount Vesuvius from 1998 to 2005: effects on seismicity and fluid circulation, J. geophys. Res., 113, B5–B05206, doi:10.1029/2007JB005210. Quan, Y.L. & Harris, J.M., 1997. Seismic attenuation tomography using the frequency shift method, Geophysics, 62, 895–905, doi:10.1190/1.1444197. Sambridge, M., 1999. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space, Geophys. J. Int., 138, 479–494, doi:10.1046/j.1365-246X.1999.00876.x. Todesco, M.,Rinaldi, A.P.&Bonafede,M., 2010. Modeling of unrest signals in heterogeneous hydrothermal systems, J. geophys. Res., 115, B09213, doi:10.1029/2010JB007474. Vandemeulebrouck, J., Stemmelen, D., Hurst, T. & Grangeon, J., 2005. Analogue modeling of instabilities in crater lake hydrothermal systems, J. geophys. Res., 110, B2–B02212, doi:10.1029/2003JB002794. Vandemeulebrouck, J., Roux, P., Gou´edard, P., Legaz, A., Revil, A., Hurst, A.W., Bol`eve, A. & Jardani, A., 2010. Appication of acoustic noise and self-potential localization techniques to a buried hydrothermal vent (Waimangu Old Geyser site, New Zealand), Geophys. J. Int., 180, 883–890, doi:10.1111/j.1365-246X.2009.04454.x. Wathelet, M., 2008. An improved neighborhood algorithm: parameter conditions and dynamic scaling, Geophys. Res. Lett., 35, L09301, doi:10.1029/2008GL033256. White, J.E., Mikhaylova, N.G. & Lyakhovitsky, F.M., 1975. Low-frequency seismic waves in fluid saturated layered rocks, Phys. Solid Earth, 11, 654–659. Zollo, A., Maercklin, N., Vassallo, M., Iacono, D.D., Virieux, J. & Gasparin, P., 2008. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera, Geophys. Res. Lett., 35, L12306, doi:10.1029/2008GL034242.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorLetort, J.en
dc.contributor.authorRoux, P.en
dc.contributor.authorVandemeulebrouck, J.en
dc.contributor.authorCoutant, O.en
dc.contributor.authorCros, E.en
dc.contributor.authorWathelet, M.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorAvino, R.en
dc.contributor.departmentISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.en
dc.contributor.departmentISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.en
dc.contributor.departmentISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Université de Savoie, Chamb´ery, Franceen
dc.contributor.departmentISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.en
dc.contributor.departmentISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e de Savoie, Chamb´ery, Franceen
dc.contributor.departmentDipartimento di Scienze della Terra, Universit`a di Perugia, Perugia, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Universit`a di Perugia, Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptEcole et Observatoire des Sciences de la Terre, Universite de Strasbourg, France-
crisitem.author.deptISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e Grenoble 1, France.-
crisitem.author.deptLGIT-IRIGM, Université Joseph Fourier and CNRS, Grenoble, France-
crisitem.author.deptISTERRE, Institut des Sciences de la Terre, CNRS UMR 5275, Universit´e de Savoie, Chamb´ery, France-
crisitem.author.deptLGIT, University J. Fourier, Grenoble, France-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-2991-4215-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
High resolution.pdf9.17 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on Feb 10, 2021

Page view(s) 20

307
checked on Mar 27, 2024

Download(s)

29
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric