Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8233
AuthorsCaracciolo, L.* 
Tolosana-Delgado, R.* 
Le Pera, E.* 
von Eynatten, H.* 
Arribas, J.* 
Tarquini, S.* 
TitleInfluence of granitoid textural parameters on sediment composition: Implications for sediment generation
Issue Date2012
Series/Report no./280 (2012)
DOI10.1016/j.sedgeo.2012.07.005
URIhttp://hdl.handle.net/2122/8233
KeywordsTextural parameters
Grain size;
Composition
Glacial environment
Sediment generation
Subject Classification04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology 
04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport 
AbstractThe aim of this study is to determine and characterise the control exerted by parent rock texture on sand composition as a function of grain size. The sands investigated were generated from granitoid parent rocks by the Rhone, Damma and Sidelen glaciers, which drain the Aar Massif in the Central Alps (Switzerland), and were deposited in glacial and fluvio-glacial settings. Mechanical erosion, comminution (crystal breakdown and abrasion) and hydraulic sorting are the most important processes controlling the generation of sediments in this environment, whereas chemical and/or biochemical weathering plays a negligible role. By using a GIS-based Microscopic Information System (MIS), five samples from the glacier-drained portions of the Aar basement have been analysed to determine textural parameters such as modal composition, crystal size distribution and mineral interfaces (types and lengths). Petrographic data of analysed sands include traditional point counts (Gazzi-Dickinson method, minimum of 300 points) as well as textural counts to determine interface types, frequency, and polycrystallinity in phaneritic rock fragments. According to Pettijohn's classification, grain‐size dependent compositions vary from feldspathic litharenite (0φ fraction) via lithic arkose (1φ and 2φ) to arkose (3φ and 4φ). Compositional differences among our data set were compared to modern plutoniclastic sands from the Iberian Massif (Spain) and the St. Gabriel Mts. (California, USA), which allowed us to assess the role exerted by glaciers in generating sediments. By combining data from the MIS with those from petrographic analysis, we outlined the evolution of mineral interfaces from the parent rocks to the sediments.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
PP_SG_Caracciolo_etal_2012.pdf3.02 MBAdobe PDFView/Open
SG_Caracciolo_etal_2012.pdf4.47 MBAdobe PDFView/Open    Request a copy
Show full item record

Page view(s)

89
checked on May 25, 2017

Download(s)

86
checked on May 25, 2017

Google ScholarTM

Check

Altmetric