Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8222
DC FieldValueLanguage
dc.contributor.authorallGarcia-Aristizabal, A.; Center for the Analysis and Monitoring of Environmental Risk (AMRA)en
dc.contributor.authorallMarzocchi, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFujita, E.; National Research Institute for Earth Science and Disaster Prevention (NIED)en
dc.date.accessioned2012-10-16T12:59:46Zen
dc.date.available2012-10-16T12:59:46Zen
dc.date.issued2012-03en
dc.identifier.urihttp://hdl.handle.net/2122/8222en
dc.description.abstractThe definition of probabilistic models as mathematical structures to describe the response of a volcanic system is a plausible approach to characterize the temporal behavior of volcanic eruptions, and constitutes a tool for long-term eruption forecasting. This kind of approach is motivated by the fact that volcanoes are complex systems in which a com- pletely deterministic description of the processes preceding eruptions is practically impos- sible. To describe recurrent eruptive activity we apply a physically-motivated probabilistic model based on the characteristics of the Brownian passage-time (BPT) distribution; the physical process defining this model can be described by the steady rise of a state variable from a ground state to a failure threshold; adding Brownian perturbations to the steady load- ing produces a stochastic load-state process (a Brownian relaxation oscillator) in which an eruption relaxes the load state to begin a new eruptive cycle. The Brownian relaxation os- cillator and Brownian passage-time distribution connect together physical notions of unob- servable loading and failure processes of a point process with observable response statistics. The Brownian passage-time model is parameterized by the mean rate of event occurrence, μ , and the aperiodicity about the mean, α . We apply this model to analyze the eruptive his- tory of Miyakejima volcano, Japan, finding a value of 44.2(±6.5 years) for the μ parameter and 0.51(±0.01) for the (dimensionless) α parameter. The comparison with other models often used in volcanological literature shows that this pysically-motivated model may be a good descriptor of volcanic systems that produce eruptions with a characteristic size. BPT is clearly superior to the exponential distribution and the fit to the data is comparable to other two-parameters models. Nonetheless, being a physically-motivated model, it provides an insight into the macro-mechanical processes driving the system.en
dc.description.sponsorshipINGV - Sezione di Bologna; Universita' di Bologna - Marco Polo programen
dc.language.isoEnglishen
dc.publisher.nameSpringer Berlin Heidelbergen
dc.relation.ispartofBulletin of volcanologyen
dc.relation.ispartofseries/74 (2012)en
dc.relation.isversionofhttp://www.springerlink.com/content/f877878r8426rl28/en
dc.subjectProbabilistic models; Brownian passage-time distribution;en
dc.subjectHazard function; Miyakejima volcanoen
dc.titleA Brownian Model for Recurrent Volcanic Eruptions: an Application to Miyakejima Volcano (Japan)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber545-558en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.subject.INGV05. General::05.08. Risk::05.08.01. Environmental risken
dc.identifier.doi10.1007/s00445-011-0542-4en
dc.relation.referencesAkaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC 19:716– 723 Bain LJ (1978) Statistical analysis of reliability and life-testing models, Theory and Methods. Marcel Dekker, New York Bebbington MS, Lai CD (1996a) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600 Bebbington MS, Lai CD (1996b) Statistical analysis of new zealand volcanic occurrence data. J Vol- canol Geotherm Res 74:101–110 Bowers N, Gerber H, Hickman J, Jones D, Nesbitt C (1997) Actuarial Mathematics, 2nd edn. Society of Actuaries Burt ML, Wadge G, Scott WA (1994) Simple stochastic modelling of the eruption history of a basaltic vol- cano: Nyamuragira, Zaire. Bull Volcanol 56:87–97 Coles S, Sparks R (2006) Extreme value methods for modeling historical series of large volcanic magni- tudes. In: Mader H, Coles S, Connor C, Connor L (eds) Statistics in Volcanology, IAVCEI Publications, Geological Society, London, pp 47–56 Connor CB, Sparks RSJ, Mason RM, Bonadonna C (2003) Exploring links between physical and probabilistic models of volcanic eruptions: The soufriere hills volcano, montserrat. Geophys Res Lett 30(13), DOI 10.1029/2003GL017384 Cox DR, Lewis PAW (1966) The statistical analysis of Series of Events. Mathuen, New York De la Cruz-Reyna S (1991) Poisson-distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67 Ellsworth WL, Matthews MV, Nadeau RM, Nishenko SP, Reasenberg PA, Simpson RW (1999) A physically based earthquake recurrence model for estimation of long-term earthquake probabilities. U S Geol Surv Open-File Rept pp 99–522 Ho C (1991) Nonhomogeneous Poisson model for volcanic eruptions. Math Geol 23(2):167–173 Ho CH (1996) Volcanic time-trend analysis. J Volcanol Geotherm Res 74(3-4):171–177 Klein F (1982) Patterns of historical eruptions at Hawaiian volcanoes. J Volcanol Geotherm Res 12(1-2):1–35, DOI 10.1016/0377-0273(82)90002-6 Marzocchi W, Zaccarelli L (2006) A quantitative model for time-size distribution of eruptions. J Geophys Res 111(B04204), DOI 10.1029/2005JB003709 Matthews M, Ellsworth W, Reasenberg P (2002) A Brownian model for recurrent earthquakes. Bull Seism Soc Am 92(6):2233–2250, DOI 10.1785/0120010267 Mulargia F, Tinti S (1985) Seismic sample areas defined from incomplete catalogs: An application to the italian territory. Phys Earth Planet Inter 40(4):273–300 Mulargia F, Tinti S, Boschi E (1985) A statistical analysis of flank eruptions on Etna volcano. J Vol- canol Geotherm Res 23(3-4):263–272 Mulargia F, Gasperini P, Tinti E (1987) Identifying different regimes in eruptive activity: an application to Etna volcano. J Volcanol Geotherm Res 34(1-2):89–106 Nakada S, Nagai M, Kaneko T, Nozawa A, Suzuki-Kamata K (2005) Chronology and prod- ucts of the 2000 eruption of Miyakejima volcano, Japan. Bull Volcanol 67(3):205–218, URL http://www.springerlink.com/content/cj0d4tkcfamr7f32 Newhall C, Self S (1982) The Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238 Ogata Y (1999) Estimating the hazard of ruptire using uncertain occurrence times of paleoearthquakes. J Geo- phys Res 104(B8):17,995–18,014 Sandri L, Marzocchi W, Gasperini P (2005) Some insights on the occurrence of recent volcanic eruptions of Mount Etna volcano (Sicily, Italy). Geophys J Int 163(3):1203–1218 Simkin T, Siebert L (2002 onwards) Volcanoes of the World: an Illustrated Catalog of Holocene Volca- noes and their Eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, (http://www.volcano.si.edu/world/) Tsukui M, Suzuki Y (1998) Eruptive history of Miyakejima volcano during the last 7000 years. Bull Vol- canol Soc Japan 43:149–166 Ueda H, Fujita E, Ukawa M, Yamamoto E, Irwan M, Kimata F (2005) Magma intrusion and discharge process at the initial stage of the 2000 activity of Miyakejima, Central Japan, inferred from tilt and GPS data. Geophys J Int 161(3):891–906, DOI 10.1111/j.1365-246X.2005.02602.x Watt SFL, Mather TA, Pyle DM (2007) Vulcanian explosion cycles: Patterns and predictability. Geology 35(9):839–842, DOI 10.1130/G23562A.1 Wickman FE (1976) Markov models of repose-period patterns of volcanoes, in: Random Process in Geology, Springer, New York, pp 135–161en
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0258-8900en
dc.relation.eissn1432-0819en
dc.contributor.authorGarcia-Aristizabal, A.en
dc.contributor.authorMarzocchi, W.en
dc.contributor.authorFujita, E.en
dc.contributor.departmentCenter for the Analysis and Monitoring of Environmental Risk (AMRA)en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentNational Research Institute for Earth Science and Disaster Prevention (NIED)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptNational Research Institute for Earth Science and Disaster Prevention (NIED)-
crisitem.author.orcid0000-0001-9196-8452-
crisitem.author.orcid0000-0002-9114-1516-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
BullVolFinalVersion_GarciaMarzocchiFujita.pdfPreprint - Main article1.29 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

16
checked on Feb 10, 2021

Page view(s) 20

367
checked on Apr 13, 2024

Download(s) 10

584
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric