Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Béniguel, Y.*
Forte, B.*
Radicella, S. M.*
Strangeways, H. J.*
Gherm, V. E.*
Zernov, N. N.*
Title: Scintillations effects on satellite to Earth links for telecommunication and navigation purposes
Issue Date: 2004
Series/Report no.: 47 (2-3 supl)
Abstract: Radio wave scintillations are rapid fluctuations in both amplitude and phase of signals propagating through the atmosphere. GPS signals can be affected by these disturbances which can lead to a complete loss of lock when the electron density strongly fluctuates around the background ionization level at small spatial scales. This paper will present recent improvements to the theoretical Global Ionospheric Scintillation Model (GISM), particularly tailored for satellite based navigation systems such GPS coupled with Satellite Based Augmentation System (SBAS). This model has been improved in order to take into account GPS constellation, signals, and receiver response to ionospheric scintillation environments. A new modelling technique, able to describe the scintillation derived modifications of transionospheric propagating fields is shown. Results from GPS derived experimental measurements performed at high and low magnetic latitudes will show preliminary assessments of the scintillation impact on real receivers and system operations. Nevertheless, comparisons between theoretical scintillation models, such as WBMOD and GISM, with GPS derived experimental data will be shown.
Appears in Collections:01.02.06. Instruments and techniques
Annals of Geophysics

Files in This Item:

File SizeFormatVisibility
16Bniguel.pdf2.54 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA