Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8157
DC FieldValueLanguage
dc.contributor.authorallKanduc, T.; Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Sloveniaen
dc.contributor.authorallMori, N.; National Institute of Biology, Department of freshwater and terrestrial ecosystems research, Večna pot 111, 1000 Ljubljana, Sloveniaen
dc.contributor.authorallKocman, D.; Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Sloveniaen
dc.contributor.authorallStibilj, V.; Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Sloveniaen
dc.contributor.authorallGrassa, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2012-10-11T13:54:30Zen
dc.date.available2012-10-11T13:54:30Zen
dc.date.issued2012-03-18en
dc.identifier.urihttp://hdl.handle.net/2122/8157en
dc.description.abstractSpringwater chemistry and carbon cycling in our study mainly depend on geological composition of the aquifer. The investigated Alpine springs in Slovenia represent waters strongly influenced by chemicalweathering ofMesozoic limestone and dolomite, only one spring was located in Permo-Carboniferous shales. The carbon isotopic composition of dissolved inorganic carbon (DIC) and suspended organic carbon (POC) as well as major solute concentrations yielded insights into the origin of carbon in Alpine spring waters. The major solute composition was dominated by carbonic acid dissolution of calcite. Waters were generally close to saturation with respect to calcite, and dissolved CO2 was up to fortyfold supersaturated relative to the atmosphere. δ13 C of DIC indicates the portion of soil CO2 contributed in water and is related with soil thickness of infiltrating water in aquifer and could be therefore used as a tool for vulnerability assessment. The δ13 C of DIC ranged from−15.8‰ to −1.5‰ and indicated less and more vulnerable aquifers. Mass balances of carbon for spring waters draining carbonate rocks suggest that carbonate dissolution contributes from approximately 49% to 86% and degradation of organic matter from 13.7% to 51.4%, depending on spring and its relation with rock type, soil environment, and geomorphic position. Stable oxygen isotope composition of water (δ18OH2O), and tritium values range from −12.2 to −9.3‰and from6.4 to 9.8 TU, respectively and indicate recharge frommodern precipitation. According to active decay of tritiumand tritiumin modern precipitation the age of spring waters are estimated to be about 2.6 years for springs located in Julian Alps, about 5 years for springs located in Karavanke and about 5 years for springs located in Kamniško–Savinjske Alps.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofChemical geologyen
dc.relation.ispartofseries/300-301 (2012)en
dc.subjectHydrogeochemistryen
dc.subjectStable isotopesen
dc.subjectCarbonen
dc.subjectOxygenen
dc.titleHydrogeochemistry of Alpine springs from North Slovenia: Insights from stable isotopesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlUnreferreden
dc.description.pagenumber40-54en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.identifier.doi10.1016/j.chemgeo.2012.01.012en
dc.relation.referencesAtekwana, E.A., Krishnamurthy, R.V., 1998. Seasonal variations of dissolved inorganic carbon and δ13 C of surface waters: application of a modified gas evaluation technique. Journal of Hydrology 205, 260–278. Barth, J.A.C., Cronin, A.A., Dunlop, J., Kalin, R.M., 2003. Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chemical Geology 200, 203–216. Bottcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L., 1990. Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of denitrification in a sandy aquifer. Hydrogeology Journal 114, 413–424. Brenčič, M., Poltnig, W., 2008. Podzemne vode Karavank : skrito bogastvo=Grundwasser der Karawanken Versteckter Schatz, Geološki zavod Slovenije, Ljubljana, Joanneum Research Forschungsgesellschaft, Gratz (in Slovene, in German). Brenčič, M., Prestor, J., Kompare, B., Matoz, H., Kranjc, S., 2009. Integrated approach to delineation of drinking water protection zones. Geologija 52 (2), 175–182. Buser, S., 1987. Geological map of Slovenia. Encyclopedia of Slovenia No. 8. Mladinska knjiga, Ljubljana (in Slovene). Cartwright, I., Weaver, T., Tweed, S., Ahearne, D., Cooper, M., Czapnik, C., Tranter, J., 2000. O, H, C isotope geochemistry of carbonated mineral springs in central Victoria, Australia: sources of gas and water–rock interactions during basaltic volcanism. Journal of Geochemical Exploration 69–70, 257–261. Clark, I., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, New York. Clesceri, L.S., Greenberg, A.E., Eaton, A.D., 1998. Standard methods for the examination of water and wastewater, 20th edition. APHA, AWWA, WEF, Baltimore. Coplen, T.B., 1994. Reporting and stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66, 273–276. Coplen, T.B., Wildman, J.D., Chen, J., 1991. Improvements in the gaseous hydrogen– water equilibration technique for hydrogen isotope ratio analysis. Analytical Chemistry 63, 910–912. Craig, H., 1961. Isotopic variation in meteoric waters. Science 133, 1702–1703. Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochimica et Cosmochimica Acta 38, 1147–1164. Drever, J.I., 1988. The geochemistry of Natural Waters. Prentice-Hall, New Jersey: Englewood Cliffs, p. 473. Drew, D., Hoetzl, H., 1999. Karst hydrogeology and human activities. Impacts, consequences and implications. IAH-International contributions to hydrogeology, A.A. Balkema. Brookfield, Rotterdam, p. 322. Epstein, S., Mayeda, T., 1953. Variations of 18O contents of water from natural sources. Geochimica et Cosmochimica Acta 4, 213–224. Frantar, P., 2007. Geographical overview of water balance of Slovenia 1971–2000 by main river basins. Acta Geographica Slovenica 47, 25–45. Fry, B., Ruf, W., Gest, H., Hayes, J.M., 1988. Sulphur isotope effects associated with oxidation of sulphide by O2 in aqueous solution. Chemical Geology (Isotope Geoscience Section) 73, 205–210. Glavič-Cindro, D., 2011. Yearly report on gamma- and beta ray emmiters activity measurements. No 8/21, Jožef Stefan Institute (working report). 25 pp. Gröning, M., Rozanski, K., 2003. Uncertainty assessment of environmental tritium measurements in water. Accreditation and Quality Assurance 8, 359–366. Habič, P., 1969. Hidogeografska rajonizacija krasa v Sloveniji. KRS Jugoslavije 6, 79–97 Zagreb (in Slovene). Herman, J.S., Lorah, M.M., 1987. CO2 outgassing and calcite precipitation in Falling Spring Creek, Virginia, U. S. A. Chemical Geology 62, 251–262. Ittekot, V., 1988. Global trends in the nature of organic matter in the river suspensions. Nature 332, 436–438. Janža, M., 2010. Hydrological modeling in the karst area, Rižana spring catchment, Slovenia. Environmental Earth Science 61, 909–920.Kanduč, T., Ogrinc, N., 2007. Hydrogeochemical characteristics of the river Sava watershed in Slovenia. Geologija 50, 157–177. Kanduč, T., Ogrinc, N., Mrak, T., 2007a. Characteristics of suspended matter in the River Sava watershed, Slovenia. Isotopes in Environmental and Health Studies 43, 369–385. Kanduč, T., Szramek, K., Ogrinc, N., Walter, L.M., 2007b. Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry 86, 137–154. Katz, B.G., Coplen, T.B., Bullen, T.D., Davis, J.H., 1997. Use of chemical and isotopic Tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water 36 (6), 1014–1028. Kendall, C., Sklash, M.G., Bullen, T.D., 1995. Isotope tracers of water and solute sources in catchments. In: Trudgill, S.T. (Ed.), Solute, Modelling in Catchment System. Wiley, Somerset, NJ, pp. 261–303. Kennedy, V.C., Kendall, C., Zellweger, G.W., Wyerman, T.A., Avanzino, R.J., 1986. Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River Basin, California. Journal of Hydrology 84, 107–140. Klass, D.L., 1984. Methane from anaerobic fermentation. Science 223, 1021–1028. Larsen, D., Swihart, G.H., Xiao, Y., 2001. Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA. Chemical Geology 179, 17–35. Lesniak, P.M., Sakai, H., 1989. Carbon isotope fractionation between dissolved carbonate (CO3 2−) and CO2 (g) at 25° and 40 °C. Earth and Planetary Science Letters 95, 297–301. Machel, H.G., Krouse, H.R., Sassen, R., 1995. Products and distinguishing criteria of bacterial and thermochemical sulphate reduction. Applied Geochemistry 10, 373–389. Mayo, A.L., Loucks, M.D., 1995. Solute and isotopic geochemistry and groundwater flow in the central Wasatch Range, Utah. Journal of Hydrology 172, 31–59. Miyajima, T., Yamada, Y., Hanba, Y.T., 1995. Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnology and Oceanography 40 (5), 994–1000. Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22, 169–176. O′Leary, M.H., 1988. Carbon isotopes in photosynthesis. Bioscience 38, 328. Ogrin, D., 1998. Podnebje=Climate. In: Fridl, J., Kladnik, D., Adamič, M., Perko, D.V. (Eds.), Geografski atlas, Ljubljana, DZS. 110–111 pp. (in Slovene). Ogrinc, N., Kanduč, T., Stichler, W., Vreča, P., 2008. Spatial and seasonal variations in δ18O and δD values in the river Sava in Slovenia. Journal of Hydrology 359, 303–312. Ogrinc, N., Kocman, D., Vreča, P., Kanduč, T., Žigon, S., 2010. Isotope investigation of the river Sava in Slovenia: long-term isotopic monitoring of surface water and precipitation at selected sites. IJS working report, 10628. Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2) – a computer program for speciation, batch – reaction, one – dimensional transport, and inverse geochemical calculations. Water – Resources Investigations Report, pp. 99–4259. Petrič, M., 2004. Alpine karst waters in Slovenia. Acta Carsologica 33, 11–24. Plastino, W., Chereji, I., Cuna, S., Kaihola, L., Felice, P., Lupsa, N., Balas, G., Mirel, V., Berdea, P., Baciu, C., 2007. Tritium in water electrolytic enrichment and liquid scintillation counting. Radiation Measurements 42, 68–73. Romanek, C.S., Grossman, E.L., Morse, J.W., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects temperature and precipitation rate. Geochimica et Cosmochimica Acta 46, 419–430. Sakai, H., 1968. Isotopic properties of sulphur compounds in hydrothermal processes. Geochemical Journal 2, 29–49. Spötl, C., 2005. A robust and fast method of sampling and analysis of δ13C of dissolved inorganic carbon in ground waters. Isotopes in Environmental and Health Studies 41, 217–221. Szramek, K., McIntosh, J.C., Williams, E.L., Kanduč, T., Ogrinc, N., Walter, L.M., 2007. Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins. Geochemistry, Geophysics, Geosystems (G3) 8, 1–26. Taylor, C.B., Brown, L.J., Cunliffe, J.J., Davidson, P.W., 1992. Environmental tritium and 18O in a hydrological study of the Wairau Plain and its contributing mountain catchments, Marlborough, New Zeland. Journal of Hydrology 138, 269–319. Ter Braak, C.J.F., Šmilauer, P., 2002. CANOCO, version 4.5 2002. Van Abs, D.J., Stanuikynas, T.J., 2000.Water Budget in the Raritan River Basin. A Technical Report for the Raritan Basin Watershed Management Project New JerseyWater Supply Authority. Internet: http://www.raritanbasin.org/Reports/WaterBudgetReport. pdf. 23.1.2006. Villa, M., Mannjón, G., 2004. Low-level measurements of tritium in water. Applied Radiation and Isotopes 61, 319–323. Vreča, P., Kanduč, T., Žigon, S., Trkov, Z., 2004. Isotopic composition of precipitation in Slovenia. Isotopic composition of precipitation in the Mediterranean basin in relation to air circulation pattern and climate: final report of a coordinated research project 2000–2004, (IARA-TECDOC, 1453). IAEA, Vienna, pp. 157–172. Vreča, P., Krajcar Bronić, I., Horvatinčić, N., Barešić, J., 2006. Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. Journal of Hydrology 330, 457–469. Yang, C., Telmer, K., Veizer, J., 1996. Chemical dynamics of the ‘St. Lawrance’ riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfate, and dissolved 87Sr/86Sr. Geochimica et Cosmochimica Acta 60, 851–866. Yee, P., Edgett, R., Eberhardt, A., 1990. Great lakes – St. Lawrence River regulation; what it means and how it works. Joint publication ofen
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0009-2541en
dc.relation.eissn1872-6836en
dc.contributor.authorKanduc, T.en
dc.contributor.authorMori, N.en
dc.contributor.authorKocman, D.en
dc.contributor.authorStibilj, V.en
dc.contributor.authorGrassa, F.en
dc.contributor.departmentDepartment of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Sloveniaen
dc.contributor.departmentNational Institute of Biology, Department of freshwater and terrestrial ecosystems research, Večna pot 111, 1000 Ljubljana, Sloveniaen
dc.contributor.departmentDepartment of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Sloveniaen
dc.contributor.departmentDepartment of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Sloveniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptNational Institute of Biology, Department of freshwater and terrestrial ecosystems research, Večna pot 111, 1000 Ljubljana, Slovenia-
crisitem.author.deptDepartment of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia-
crisitem.author.deptDepartment of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-5043-792X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Kanduc et al., Chem Geo, 2012.pdfResearch paper1.15 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

37
checked on Feb 10, 2021

Page view(s) 20

285
checked on Apr 17, 2024

Download(s)

41
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric