Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8087
DC FieldValueLanguage
dc.contributor.authorallDi Rocco, T.; Sapienza Universityen
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGaeta, M.; Sapienza Universityen
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDallai, L.; IGG-CNRen
dc.date.accessioned2012-10-09T07:32:36Zen
dc.date.available2012-10-09T07:32:36Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8087en
dc.description.abstractCrystal-rich lithic clasts occurring in volcanic deposits are key tools to understand processes of storage, cooling, and fractionation of magmas in pre-eruptive volcanic systems. These clasts, indeed, represent snapshots of the magma-chamber/host-rock interface before eruptions and provide information on crystallization, differentiation, and degrees of interaction between magma and wall-rocks. In this study, with the aim to shed light on magma-carbonate interaction and CO2 emission in volcanic areas, we focused on the petrology of cumulate and skarn rocks by using as case study a suite of mafic and calcite-bearing lithic clasts from the Colli Albani Volcanic District. By means of phase relations, bulk rock chemistry, phase compositions, and stable isotope data we have recognized different types of cumulates and skarns. Cumulates containing either clinopyroxene±olivine associated with Cr-bearing spinel or glass+phlogopite have been divided in primitive and differentiated, respectively. Primitive cumulates originate at the interface between a relatively primitive magma and carbonate-bearing rocks and show evidences of olivine instability (i.e. heteradcumulate texture) due to carbonate assimilation. Differentiated cumulates, characterized by Ca-rich olivines, phlogopite, and glass containing calcite, form from a differentiated magma in a system open to CaO-contamination. Skarns has been divided in exoskarns, characterized by xenomorphic texture and abundant calcite, and endoskarns, characterized by hypidiomorphic texture, Ca-Tschermak-rich mineral phases, and interstitial glass. Exoskarns formed by means of solid state reactions in a dolostone protolith whereas endoskarns crystallized at subliquidus temperature from a silicate melt that experienced exoskarns assimilation. Our study evidences that magma-carbonate interaction can not be considered a one step process exhausting just after the formation of skarn shells. Magma and carbonate rocks, when in contact, continuously interact leading to the formation of exoskarns, endoskarns, cumulates (primitive and differentiated ones), and differentiated melts. Finally, by means of oxygen and carbon isotope compositions of calcite in equilibrium with skarns, we demonstrate that carbonate assimilation represents a source of massive CO2 degassing mechanism due to the consumption of calcite and removing of CO2 during the decarbonation process.en
dc.description.sponsorshipSapienza Universita' di Roma INGV-DPC [Project V 3.1, Colli Albani].en
dc.language.isoEnglishen
dc.publisher.nameOxford University Pressen
dc.relation.ispartofJournal of petrologyen
dc.relation.ispartofseries11/53 (2012)en
dc.subjectmagma/carbonate interactionen
dc.subjectCO2 degassingen
dc.subjectc umulate and skarnen
dc.subjectColli Albanien
dc.titleMagma chambers emplaced in carbonate substrate: petrogenesis of skarn and cumulate rocks and implication on CO2-degassing in volcanic areasen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2307-2332en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.1093/petrology/egs051en
dc.relation.referencesAleksandrov, S.M. (1998). Geochemistry of skarn and ore formation in dolomites. VSP Utrecht, The Nederlands, 300. Asprey, L. B. (1976). The preparation of very pure F2 gas. Journal of Fluorine Chemistry 7, 359–361. Baker C. K. & Black P. M. (1980) Assimilation and metamorphism at the basalt-limestone contact, Tokatoka, New Zealand. Mineralogical Magazine 43, 797–807. Barnes, C.G., Allen, C.M., & Brigham, R.H. (1987). Isotopic heterogeneity in a tilted plutonic system, Klamath Mountains, California. Geology 15, 523–527. Barnes, C., Prestvik, T., Sundvoll, B. & Surratt, D. (2005). Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north-central Norway. Lithos 80, 179-199. Barton, M.D., Ilchik, R.P., & Marikos, M.A. (1991). Metasomatism. Mineralogical Society of America, Reviews in Mineralogy 26, 321–350. Baumgartner, L.P. & Valley, J.W. (2001). Stable isotope transport and contact metamorphic fluid flow. Review in Mineralogy and Geochemistry 43, 415-468. Belkin, H.E., De Vivo, B., Roedder, E. & Cortini M. (1985). Fluid inclusion geobarometry from ejected Mt Somma-Vesuvius nodules. American Mineralogist 70, 288-303. Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V. & Conticelli, S. (2009). Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bullettin of Volcanology 71, 977-1005. Bowen, N.L. (1922). The behavior of inclusions in igneous magmas. Journal of geology 30, 513-570. Bowman, J. R., O'Neil, J. R. & Essene, E. J. (1985). Contact skarn formation at Elkhorn, Montana. II: Origin and evolution of C-O-H skarn fluids. American Journal of Science 285, 621-660. Carapezza, M.L. & Tarchini, L. (2007). Accidental gas emission from shallow pressurized aquifers at Alban Hills Volcano (Rome, Italy): geochemical evidences of volcanic degassing? Journal of Volcanology and Geothermal Research 165, 5-16. Cavarretta, G. & Tecce, F. (1987). Contact metasomatic and hydrothermal minerals in the SH2 well, Sabatini Volcanic District, Latium, Italy. Geothermics 2, 127–145. Chadwick, J.P., Troll, V.R., Ginibre, C., Morga, D., Gertisser, R., Waight, T.E. & Davidson, J. P. (2007). Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. Journal of Petrology 48, 1793-1812. Chako, T. Mayeda, T.K., Clayton, R.N. & Goldsmith, J.R. (1991). Oxygen and carbon isotope fractionation between CO2 and calcite: Geochimica et Cosmochimica Acta 55, 2867–2882. Chiba, H., Chacko, T., Clayton, R.N. & Goldsmith, J.R. (1989). Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite; application to geothermometry. Geochimica et Cosmochimica Acta 53, 2985-2995. Chiodini, G. & Frondini, F. (2001). Carbon dioxide degassing from the Alban Hills volcanic region, Central Italy. Chemical Geology 177, 67-83. Chiodini, G., Caliro, S. Aiuppa, A., Avino, R., Granieri, D., Moretti, M. & Parello, F. (2011). First 13C/12C isotopic characterisation of volcanic plume CO2. Bulletin of Volcanology, DOI: 10.1007/s00445-010-0423-2. Clayton, R.N. & Mayeda, T.K. (1983). Oxygen isotopes in eucrites, shergottites, nakhilites, and chassignites. Earth and Planetary Science Letters 62, 1–6. Coulson, I. M., Westphal, M., Anderson, R. G. & Kyser T. K. (2007). Concomitant skarn and syenitic magma evolution at the margins of the Zippa Mountain pluton. Mineralogy and Petrology 90, 199–221. Daly, R.A. (1910). Origin of the alkaline rocks: Geological Society of America Bulletin 21, 87–118. DePaolo, D. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization: Earth and Planetary Science Letters 53, 189–202. De Benedetti, A.A., Funiciello, R., Giordano, G., Diano, G., Caprilli, E. & Paterne, M. (2008). Volcanology, history and myth of the Lake Albano maar (Colli Albani volcano, Italy). Journal of Volcanoly and Geothrmal Research 176, 387-406. De Rita, D., Faccenna, C. & C. Rosa (1995). Stratigraphy and volcano tectonics. In: Trigila, R. (ed.) The Volcano of the Alban Hills. Rome: Universita' degli Studi di Roma ‘La Sapienza’, 33-71. Devine, J.D. & Sigurdsson, H. (1980). Garnet-fassaite calc-silicate nodule from La Soufrière, St. Vincent. American Mineralogist 65, 302-305. Federico, M. & Peccerillo, A. (2002). Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano (Central Italy). Mineralogy and Petrology 74, 223-252. Federico, M., Peccerillo, A., Barbieri, M. & Wu, T.W. (1994). Mineralogical and geochemical study of granular xenolithes from the Alban Hills volcano, Central Italy. Contribution to Mineralogy and Petrology 115, 384-401. Foland, K.A., Landoll, J.D., Henderson, C.M.B., & Jiangfeng, C. (1993). Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta 57, 697-704. Fornaseri, M. (1951). Ricerche petrogrfiche sul Vulcano Laziale. I proietti inclusi nei tufi. 1. Gli inclusi a struttura granulare. Periodico di Mineralogia 20, 211-235. Freda, C., Gaeta, M., Karner, D. B., Marra, F., Renne, P. R., Taddeucci, J., Scarlato P., Christensen, J. N. & Dallai L. (2006). Eruptive history and petrologic evolution of the Albano multiple Maar (Alban Hills, Central Italy). Bullettin of Volcanology 68, 567-591. Freda, C., Gaeta, M., Misiti, V., Mollo, S., Dolfi, D. & Scarlato, P. (2008). Magma-carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101, 397-415. Freda, C., Gaeta, M., Giaccio, B., Marra, F., Palladino, D.M. Scarlato, P. & Sottili G. (2010). CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bullettin of Volcanology, DOI: 10.1007/s00445-010-0406-3. Frondini, F., Chiodini, G., Caliro, S., Cardellini, C. & Granieri, D. (2004). Diffuse CO2 soil degassing at Vesuvio, Italy. Bulletin of Volcanology 66, 642–651, DOI: 10.1007/s00445–004–0346-x. Fulignati, P., Marianelli, P., Santacroce, R. & Sbrana, A. (2004). Probing the Vesuvius magma chamber-host rock interface through xenoliths. Geological Magazine 141, 417-428. Funiciello, R. & Parotto, M. (1978). Il substrato sedimentario nell'area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell'Appennino centrale. Geologica Romana 17, 233-288. Funiciello, R., Giordano, G. & De Rita, D. (2003). The Albano maar lake (Colli Albani volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. Journal of Volcanology and Geothermal Research 123, 43-61. Gaeta, M., Di Rocco, T. & Freda, C. (2009). Carbonate assimilation in open magmatic systems; the role of melt-bearing skarns and cumulate-forming processes. Journal of Petrology 50, 361-385. Gaeta, M., Freda, C., Christensen, J.N., Dallai, L., Marra, F., Karner, D.B. & Scarlato, P. (2006). Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): clues to the source and evolution of ultrapotassic magmas. Lithos 86, 330-346. Giaccio, B., Marra, F., Hajdas, I., Karner, D.B., Renne, P.R. & Sposato, A. (2009). 40Ar/39Ar and 14C geochronology of the Albano maar deposits: Implications for defining the age and eruptive style of the most recent explosive activity at Colli Albani Volcanic District, Central Italy. Journal of Volcanology and Geothermal Research 185, 203-213. Giaccio, B., Sposato, A., Gaeta, M., Marra, F., Palladino, D. M., Taddeucci, J., Barbieri, M., Messina, P. & Rolfo, M. F. (2007). Mid-distal occurrences of the Albano Maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity at the Colli Albani Volcanic District, Central Italy. Quaternary International 171-172, 160-178. Giggenbach, W.F., Minissale, A. & Scandiffio, G. (1988). Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy. Applied Geochemistry 3, 475-486. Glazner, A.F. (2007). Thermal limitations on incorporation of wall rock into magma. Geology 35, 319-322. Goff, F., Love, S.P., Warren, R.G., Counce, D., Obenholzner, J., Siebe, C., & Schmidt, S.C. (2001). Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatepetl volcano, Mexico. Chemical Geology 177 133–156. Hermes, O.D. & Cornell, W.C. (1981). Quenched crystal mush and associated magma compositions as indicated by intercumulus glasses from Mt. Vesuvius, Italy. Journal of Volcanology and Geothermal Research 9, 133-149. Hofmann, A.W. (1988). Chemical differentiation of the Earth: relationship between Mantle, Continental crus and Oceanic crust. Earth Planetary Science Letters 90, 297-314. Jutras, P., Macrae, A., Owen, J.V., Dostal, J., Preda, M. & Prichonnet, G. (2006). Carbonate melting and peperite formation at the intrusive contact between large mafic dykes and clastic sediments of the upper Palaeozoic Saint-Jules Formation, New-Carlisle. Journal of Geology 41, 23–48. Kennedy, A.K., Lofgren, G.E. & Wasserburg, G.J. (1993). An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules - equilibrium values and kinetic effects. Earth and Planetary Science Letters 15, 177-195. Kerrick, D.M. (1977). The genesis of zoned skarns in Sierra Nevada, California. Journal of Petrology 18, 144-181. Kieffer, S.W. (1982). Thermodynamics and lattice vibration of minerals: 4. Application to phase equilibria, isotope fractionation and high pressure thermodynamics properties. Reviews of Geophysics and Space Physics 20, 827-849. Kress, V.C. & Carmichael, I.S.E. (1988). Stoichiometry of the iron ooxidation reaction in silicate melts. American Mineralogist 73,1267-1274. Lentz, D.R. (1999). Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 27, 335–338. Libourel, G. (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contribution to Mineralogy and Petrology 136, 63-80. Maitra, S., Choudhury, A., Das, H. S. & Pramanik, M. J. (2005). Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition. Journal of Material Science 40, 4749-4751. Marra, F., Freda, C., Scarlato, P., Taddeucci, J., Karner, D. B., Renne, P. R., Gaeta, M., Palladino, D. M., Trigila, R. & Cavarretta, G. (2003). Post caldera activity in the Alban Hills volcanic district (Italy): 40Ar/39Ar geochronology and insight into magma evolution. Bulletin of Volcanology 65, 227-247. Marra, F., Karner, D.B., Freda, C., Gaeta, M., Renne, P. (2009). Large mafic eruptions at the Alban Hills Volcanc District (Central Italy): Chronostartigraphy, petrography and eruptive behavior. Journal of Volcanology and Geothermal Research 179, 217-232. McBirney, A.R. (1979) Effects of assimilation, in Yoder, H.S., ed., The Evolution of Igneous Rocks. Princeton, New Jersey, Princeton University Press 307-329. Michaud, V. (1995). Crustal xenoliths in recent hawaiites from Mount Etna, Italy: evidence for alkali exchanges during magma-wall rock interaction: Chemical Geology 122, 21–42. Minissale, A., Evans, W.C., Magro, G. & Vaselli, O. (1997). Multiple source components in gas manifestation from north-central Italy. Chemical Geology 142, 175-192. Mollo, S., Gaeta, M., Freda, C., Di Rocco, T., Misiti, V. & Scarlato, P. (2010). Carbonate assimilation in magmas: a reppraisal based on experimental petrology. Lithos, 114, 503-514. Onorato, E. (1930). Sulla natura della dolomite. Periodico di Mineralogia 1, 216-220. Owens, B.E. (2000). High-temperature contact metamorphism of calc-silicate xenoliths in the Kiglapait Intrusion, Labrador. American Mineralogist 85, 1595-1605. Patiño Douce, A.E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? in Castro, A., Fernandez, C., & Vigneresse, J., eds., Understanding Granites: Integrating new and classical techniques: Geological Society, London, Special Publication: London, Geological Society of London 55-75. Peccerillo, A. (2005). Plio-Quaternary Volcanism in Italy. Petrology, Geochemistry, Geodynamics. Heidelberg: Springer. Peccerilo, A., Federico, M., Barbieri, M., Brilli, M. & Wu, T.W. (2010). Interaction between ultrapotassic magmas and carbonate rocks: evidences from geochemical and isotopic (Sr-Nd-O) compositions of granular lithic clasts from the Alban Hills Volcano (Central Italy). Geochimica et Cosmochimica Acta DOI: 10.1016/j.gca.2010.02.021. Pineau, F., Shilobreeva, S., Hekinian, R., Bideau, D., & Javoy, M. (2004). Deep-sea explosive activity on the Mid-Atlantic Ridge near 34°50N: a stable isotope (C, H, O) study. Chemical Geology 211, 159–175. Piochi, M., Ayuso, R. A., De Vivo, B. & Somma, R. (2006). Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy; geochemical and Sr isotope evidence. Lithos 86, 303-329. Putirka, K. (2008). Thermometers and barometers for volcanic systems. Review in Mineralogy and Geochemistry 69, 61-120. Scheele, N. & Hoefs, J. (1992). Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contributions to Mineralogy and Petrology 112, 35-45. Shand, S.J. (1930). Limestone and the origin of felspathoidal rocks: an aftermath of the Geological Congress. Geological Magazine 67, 415–427. Sharp, Z.D. (2007). Principles of stable isotope geochemistry. Pearson Prentice Hall, Upper Saddle River NJ, 344 pp. Sparks, R.S.J., Brooker, R.A., Field, M., Kavanagh, J., Schumacher, J.C., Walter, M.J. & White, J. (2009). The nature of eruptive kimberlite melts. Lithos 112, 429-438. Spera, F.J. & Bohrson, W.A. (2001). Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystllization (EC-AFC) formulation: Journal of Petrology 42, 999-1018. Spera, F.J., & Bohrson, W.A. (2004). Open-system magma chamber evolution: an energy constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (EC-E'RAxFC): Journal of Petrology 45, 2459–2480. Sun, S.S. & McDonough, W.F. (1989). Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In: Saunders AD, Norry MG (eds) Magmatism in ocean basins. Geological Society of London 42, 313–345 Tait, S. R. (1988). Samples from the crystallising boundary layer of a zoned magma chamber. Contribution to Mineralogy and Petrology 100, 470-483. Taylor, B. E. & O’Neil J. R. (1977) Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contribution to Mineralogy and Petrology 63, 1-49. Tiepolo, M., Bottazzi, P., Palenzona, M. & Vannucci, R. (2003). A laser probe coupled with ICP-double- ocusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb dating of zircon. The Canadian Mineralogist 41, 259–272. Tracy, R.J. & Frost, B.R. (1991). Phase equilibria and thermobarometry of calcareous, ultramafici and mafic rocks and iron formations. Review in Mineralogy and Geochemistry, 26, 207-289. Vernon, R.H. & Clarke, G.L. (2008). Principles of metamorphic petrology. Cambridge University press, 446. Wager, L.R., Brown, G.M., & Wadsworth, W.J. (1960). Types of igneous cumulate. Journal of Petrology 1, 73-85. Walther, J.V. & Helgeson, H.C. (1977). Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. American Journal of Science 277, 1315–1351. Warner, R.D. & Luth, W.C. (1973). Two-phase data for the join Monticellite (CaMgSiO4)-Forsterite (Mg2SiO4): experimental results and numerical analysis. American Mineralogist 58, 998-1008. Watkinson, D.H. & Wyllie, P.J. (1969). Phase equilibrium studies bearing on the limestone-assimilation hypothesis. Geological Society of American Bulletin 80, 1565-1576. Wenzel, T., Baumgartner, L. P., Brügmann, G.E., Konnikov, E.G. & Kislov, E.V. (2002). Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia). Journal of Petrology 43, 2049–2074. Werner, C., & Brantley, S. (2003). CO2 emissions from the Yellowstone volcanic system: Geochemistry, Geophysics, Geosystems, v. 4, 1061, doi: 10.1029/2002GC000473 Wiechert, U., & Hoefs, J. (1995). An excimer laser-based micro analytical preparation technique for in-situ oxygen isotope analysis of silicate and oxide minerals Geochimica et Cosmochimica Acta 19, 4093-4101. Wiechert, U., Fiebig, J., Przybilla, R., Xiao Y. & Hoefs J. (2002). Excimer laser isotope-ratio-monitoring mass spectrometry for in situ oxygen isotope analysis. Chemical Geology 182, 179-194.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.relation.issn0022-3530en
dc.relation.eissn1460-2415en
dc.contributor.authorDi Rocco, T.en
dc.contributor.authorFreda, C.en
dc.contributor.authorGaeta, M.en
dc.contributor.authorMollo, S.en
dc.contributor.authorDallai, L.en
dc.contributor.departmentSapienza Universityen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentSapienza Universityen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIGG-CNRen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma La sapienza-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità La Sapienza-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptIstituto di Geoscienze e Georisorse – C.N.R,-Pisa-
crisitem.author.orcid0000-0002-2320-8096-
crisitem.author.orcid0000-0002-1514-5013-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Di Rocco VERSIONE ELETTRONI CA.pdfmain article1.67 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

44
checked on Feb 7, 2021

Page view(s) 50

275
checked on Apr 17, 2024

Download(s)

39
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric