Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8072
DC FieldValueLanguage
dc.contributor.authorallSiniscalchi, A.; Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, Bari, Italyen
dc.contributor.authorallTripaldi, S.; Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, Bari, Italyen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBalasco, M.; Istituto di Metodologie per l’Analisi Ambientale, Consiglio Nazionale delle Ricerche, Tito, Potenza, Italyen
dc.contributor.authorallRomano, G.; Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, Bari, Italyen
dc.contributor.authorallRuch, J.; Dipartimento di Scienze Geologiche, Università di Roma Tre, Rome, Italyen
dc.contributor.authorallSchiavone, D.; Dipartimento di Scienze Geologiche, Università di Roma Tre, Rome, Italyen
dc.date.accessioned2012-10-08T14:01:13Zen
dc.date.available2012-10-08T14:01:13Zen
dc.date.issued2012-03-30en
dc.identifier.urihttp://hdl.handle.net/2122/8072en
dc.description.abstractThis paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.en
dc.description.sponsorshipThis paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/117(2012)en
dc.subjectEtnaen
dc.subjectmagnetotelluricen
dc.subjectflank instabilityen
dc.subjectvolcanoen
dc.titleFlank instability structure of Mt. Etna inferred by a magnetotelluric surveyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB03216en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2012/2011JB008657.shtmlen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methodsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.identifier.doi10.1029/2011JB008657en
dc.relation.referencesAcocella, V., and M. Neri (2005), Structural features of an active strike-slip fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol., 27(2), 343–355, doi:10.1016/j.jsg.2004.07.006. Acocella, V., and M. Neri (2009), Dike propagation in volcanic edifices: Overview and possible developments, Tectonophysics, 471, 67–77, doi:10.1016/j.tecto.2008.10.002. Acocella, V., B. Behncke, M. Neri, and S. D’Amico (2003), Link between major flank slip and eruptions at Mt. Etna (Italy), Geophys. Res. Lett., 30(4), 2286, doi:10.1029/2003GL018642. Aizawa, K., Y. Ogawa, and T. Ishido (2009a), Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self-potential and magnetotellurics, J. Geophys. Res., 114, B01208, doi:10.1029/2008JB005910. Aizawa, K., Y. Ogawa, M. Mishina, K. Takahashi, S. Nagaoka, N. Takagi, S. Sakanaka, and T. Miura (2009b), Structural controls on the 1998 volcanic unrest at Iwate volcano: Relationship between a shallow, electrically resistive body and the possible ascent route of magmatic fluid, J. Volcanol. Geotherm. Res., 187, 131–139, doi:10.1016/j.jvolgeores. 2009b.08.009. Allard, P., B. Behncke, S. D’Amico, M. Neri, and S. Gambino (2006), Mount Etna 1993–2006: Anatomy of an evolving eruptive cycle, Earth Sci. Rev., 78, 85–114, doi:10.1016/j.earscirev.2006.04.002. Aloisi, M., O. Cocina, G. Neri, B. Orecchio, and E. Privitera (2002), Seismic tomography of the crust underneath the Etna volcano, Sicily, Phys. Earth Planet. Inter., 134, 139–155, doi:10.1016/S0031-9201(02)00153-X. Argnani, A., and C. Bonazzi (2005), Malta Escarpment fault zone offshore eastern Sicily: Pliocene-Quaternary tectonic evolution based on new multichannel seismic data, Tectonics, 24, TC4009, doi:10.1029/ 2004TC001656. Azzaro, R., C. Del Negro, and R. Rasà (1997), Magnetic evidence of a buried graben-like structure in the Pernicana - Provenzana area (Mt. Etna, Sicily) and hydrogeological implications, Acta Vulcanol., 9(1/2), 23–30. Bartel, L. C., and R. D. Jacobson (1987), Results of a controlled-source audiofrequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii, Geophysics, 52, 665–677, doi:10.1190/ 1.1442334. Battaglia, M., M. Di Bari, V. Acocella, and M. Neri (2011), Dike emplacement and flank instability at Mount Etna: Constraints from a poro-elastic-model of flank collapse, J. Volcanol. Geotherm. Res., 199, 153–164, doi:10.1016/j.jvolgeores.2010.11.005. Bedrosian, P., M. Unsworth, G. Egbert, and C. Thurber (2004), Geophysical images of the creeping San Andreas Fault: Implications for the role of crustal fluids in the earthquake process, Tectonophysics, 358, 137–158, doi:10.1016/j.tecto.2004.02.010. Berdichevsky, M., and V. I. Dmitriev (2008), Inversion strategy, in Models and Methods of Magnetotellurics, pp. 453–544, Springer, Berlin, doi:10.1007/978-3-540-77814-1_12. Berdichevsky, M. N., V. I. Dmitriev, and E. E. Pozdnjakova (1998), On two-dimensional interpretation of magnetotelluric soundings, Geophys. J. Int., 133(3), 585–606, doi:10.1046/j.1365-246X.1998.01333.x. Bonforte, A., S. Gambino, and M. Neri (2009), Intrusion of eccentric dikes: The case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano, Tectonophysics, 471, 78–86, doi:10.1016/j.tecto.2008.09.028. Bonforte, A., F. Guglielmino, M. Coltelli, A. Ferretti, and G. Puglisi (2011), Structural assessment of Mt. Etna volcano from Permanent Scatterers analysis, Geochem. Geophys. Geosyst., 12, Q02002, doi:10.1029/ 2010GC003213. Borgia, A., L. Ferrari, and G. Pasquarè (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231–235, doi:10.1038/357231a0. Bostick, F. X. (1977), A simple almost exact method of MT analysis, Geophysics, 63, 405–410. Bousquet, J. C., and G. Lanzafame (2001), Nouvelle interprétation des fractures des éruptions latérales de l’Etna: Conséquences pour son cadre tectonique, Bull. Soc. Geol. Fr., 172(4), 455–467, doi:10.2113/172.4.455.Catalano, S., G. De Guidi, C. Monaco, G. Tortorici, and L. Tortorici (2008), Active faulting and seismicity along the Siculo–Calabrian Rift Zone (southern Italy), Tectonophysics, 453, 177–192, doi:10.1016/j.tecto. 2007.05.008. Chiarabba, C., P. De Gori, and D. Patanè (2004), The Mt. Etna plumbing system: The contribution of seismic tomography, in Mt. Etna: Volcano Laboratory., Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 191–204, AGU, doi:10.1029/143GM12. Cordell, L. (1992), A scattered equivalent-source method for interpolation and gridding of potential-field data in three dimensions, Geophysics, 57(4), 629–636, doi:10.1190/1.1443275. Corsaro, R. A., M. Neri, and M. Pompilio (2002), Paleo-environmental and volcano-tectonic evolution of the south-eastern flank of Mt. Etna during the last 225 ka inferred from volcanic succession of the “Timpe”, Acireale, Sicily, J. Volcanol. Geotherm. Res., 113, 289–306, doi:10.1016/ S0377-0273(01)00262-1. De Gori, P., C. Chiarabba, D. Patanè (2005), Qp structure of Mount Etna: Constraints for the physics of the plumbing system, J. Geophys. Res. 110, B05303, doi:10.1029/2003JB002875. De Luca, G., L. Filippi, G. Patanè, R. Scarpa, and S. Vinciguerra (1997), Three-dimensional velocity structure and seismicity of Mt. Etna volcano, Italy, J. Volcanol. Geotherm. Res., 79, 123–138, doi:10.1016/S0377- 0273(97)00026-7. Descloitres, M., M. Ritz, B. Robineau, and M. Courteaud (1997), Electrical structure beneath the eastern collapsed flank of Piton de la Fournaise volcano, Reunion Island: Implications for the quest for groundwater, Water Resour. Res., 33(1), 13–19, doi:10.1029/96WR02673. Doglioni, C., F. Innocenti, and S. Mariotti (2001), Why Mt. Etna?, Terra Nova, 13(1), 25–31, doi:10.1046/j.1365-3121.2001.00301.x. Egbert, G. D. (1997), Robust multiple-station magnetotelluric data processing, Geophys. J. Int., 130, 475–496, doi:10.1111/j.1365-246X.1997. tb05663.x. Froger, J., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245–258, doi:10.1016/S0012-821X(01)00290-4. Garcia, X., and A. G. Jones (2010), Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands, from land magnetotelluric imaging, J. Geophys. Res., 115, B07104, doi:10.1029/ 2009JB006445. Giammanco, S., G. Immè, G. Mangano, D. Morelli, and M. Neri (2009), Comparison between different methodologies for detecting Radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna, Appl. Radiat. Isot., 67(1), 178–185, doi:10.1016/j.apradiso.2008.09.007. Hill, G. J., T. G. Caldwell, W. Heise, D. G. Chertkoff, H. M. Bibby, M. K. Burgess, J. P. Cull, and R. A. F. Cas (2009), Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data, Nat. Geosci., 2, 785–789, doi:10.1038/ngeo661. Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci, and G. Wittlinger (1991), Seismic heterogeneity of Mt. Etna: Structure and activity, Geophys. J. Int., 105, 139–153, doi:10.1111/j.1365-246X.1991.tb03450.x. Ingham, M. R., H. M. Bibby, W. Heise, K. A. Jones, P. Cairns, S. Dravitzki, S. L. Bennie, T. G. Caldwell, and Y. Ogawa (2009), A magnetotelluric study of Mount Ruapehu volcano, New Zealand, Geophys. J. Int., 179, 887–904, doi:10.1111/j.1365-246X.2009.04317.x. Jacobsen, B. H. (1987), A case for upward continuation as a standard separation filter for potential-field maps, Geophysics, 52(8), 1138–1148, doi:10.1190/1.1442378. Laigle, M., A. Hirn, M. Sapin, J. C. Lepine, J. Diaz, J. Gallart, and R. Nicolich (2000), Mount Etna dense array local earthquake P and S tomography and implications for volcanic plumbing, J. Geophys. Res., 105(B9), 21,633–21,646, doi:10.1029/2000JB900190. Lanzafame, G., and J. C. Bousquet (1997), The Maltese escarpment and its extension from the Mt. Etna to the Aeolian islands (Sicily): Importance and evolution of a lithosphere discontinuity, Acta Vulcanol., 9, 113–120. Lanzafame, G., M. Neri, and D. Rust (1996), Active tectonics affecting the eastern flank of Mount Etna: Structural interactions at regional and local scale, Etna: Fifteen Years On, edited by P. H. Gravestock and W. J. McGuire, pp. 25–33, Cent. for Volcanic Res., Cheltenham and Gloucester Coll. of Higher Educ., Cheltenham, U. K. Lanzafame, G., A. Leonardi, M. Neri, and D. Rust (1997), Late overthrust of the Apennine-Maghrebian Chain at the NE periphery of Mt. Etna, Italy, C.R. Acad. Sci. Paris, 324, 325–332. Ledo, J. (2006), 2-D versus 3-D magnetotelluric data interpretation, Surv. Geophys., 27, 111–148, doi:10.1007/s10712-006-0002-4. Loddo, M., D. Patella, R. Quarto, G. Ruina, A. Tramacere, and G. Zito (1989), Application of gravity and deep dipole geoelectrics in the volcanic area of Mt. Etna (Sicily), J. Volcanol. Geotherm. Res., 39, 17–39, doi:10.1016/0377-0273(89)90018-8. Lo Giudice, E., and R. Rasà (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: The Etnean region as an example, Tectonophysics, 202, 257–268, doi:10.1016/0040-1951(92)90111-I. Manzella, A., and A. Zaja (2006), Volcanic structure of the southern sector of Mt. Etna after the 2001 and 2002 eruptions defined by magnetotelluric measurements, Bull. Volcanol., 69, 41–50, doi:10.1007/s00445-006- 0054-9. Martí, A., P. Queralt, and E. Roca (2004), Geoelectric dimensionality in complex geologic areas: Application to the Spanish Betic Chain, Geophys. J. Int., 157, 961–974, doi:10.1111/j.1365-246X.2004.02273.x. Martínez-Arévalo, C., D. Patanè, A. Rietbrock, J. M. Ibánez (2005), The intrusive process leading to the Mt. Etna 2001 flank eruption: Constraints from 3-D attenuation tomography, Geophys. Res. Lett., 32, L21309, doi:10.1029/2005GL023736. Mauriello, P., D. Patella, Z. Petrillo, and A. Siniscalchi (2000), An integrated magnetotelluric study of Mt. Etna volcanic structure, Ann. Geofis., 43(2), 325–342. Merle, O., and J. F. Lenat (2003), Hybrid collapse mechanism at Piton de la Fournaise volcano, Reunion Island, Indian Ocean, J. Geophys. Res., 108(B3), 2166, doi:10.1029/2002JB002014. Merle, O., S. Barde-Cabusson, R. C. Maury, C. Legendre, G. Guille, and S. Blais (2006), Volcano core collapse triggered by regional faulting, J. Volcanol. Geotherm. Res., 158, 269–280, doi:10.1016/j.jvolgeores. 2006.06.002. Monaco, C., P. Tapponnier, L. Tortorici, and P. Y. Gillot (1997), Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125–139, doi:10.1016/S0012-821X(97)00005-8. Neri, M., and V. Acocella (2006), The 2004–05 Etna eruption: Implications for flank deformation and structural behaviour of the volcano, J. Volcanol. Geotherm. Res., 158, 195–206, doi:10.1016/j.jvolgeores.2006. 04.022. Neri, M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption, Bull. Volcanol., 66, 417–430, doi:10.1007/s00445-003-0322-x. Neri, M., V. Acocella, B. Behncke, V. Maiolino, A. Ursino, and R. Velardita (2005), Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy), J. Volcanol. Geotherm. Res., 144, 235–255, doi:10.1016/j.jvolgeores.2004.11.025. Neri, M., F. Guglielmino, and D. Rust (2007), Flank instability on Mount Etna: Radon, radar interferometry and geodetic data from the southern boundary of the unstable sector, J. Geophys. Res., 112, B04410, doi:10.1029/2006JB004756. Neri, M., F. Mazzarini, S. Tarquini, M. Bisson, I. Isola, B. Behncke, and M. T. Pareschi (2008), The changing face of Mount Etna’s summit area documented with Lidar technology, Geophys. Res. Lett., 35, L09305, doi:10.1029/2008GL033740. Neri, M., F. Casu, V. Acocella, G. Solaro, S. Pepe, P. Berardino, E. Sansosti, T. Caltabiano, P. Lundgren, and R. Lanari (2009), Deformation and eruptions at Mt. Etna (Italy): A lesson from 15 years of observations, Geophys. Res. Lett., 36, L02309, doi:10.1029/2008GL036151. Nolasco, R., P. Tarits, J. Filloux, and A. Chave (1998), Magnetotelluric imaging of the Society Islands hotspot, J. Geophys. Res., 103, 30,287–30,309, doi:10.1029/98JB02129. Patanè, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi (2002), Tomographic images and 3D locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion, Geophys. Res. Lett., 29(10), 1497, doi:10.1029/2001GL014391. Patanè, D., G. Barberi, O. Cocina, P. De Gori, and C. Chiarabba (2006), Time-resolved seismic tomography detects magma intrusions at Mount Etna, Science, 313, 821–823, doi:10.1126/science.1127724. Reid, M. E. (2004), Massive collapse of volcano edifices triggered by hydrothermal pressurization, Geology, 32, 373–376, doi:10.1130/ G20300.1. Rittmann, A. (1973), Structure and evolution of Mount Etna, Philos. Trans. R. Soc. A, 274, 5–16. Rodi, W., and R. L. Mackie (2001), Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 66, 174–187, doi:10.1190/1.1444893. Ruch, J., V. Acocella, F. Storti, M. Neri, S. Pepe, G. Solaro, and E. Sansosti (2010), Detachment depth revealed by rollover deformation: An integrated approach at Mount Etna, Geophys. Res. Lett., 37, L16304, doi:10.1029/2010GL044131. Rust, D., B. Behncke, M. Neri, and A. Ciocanel (2005), Nested zones of instability in the Mount Etna volcanic edifice, Sicily, J. Volcanol. Geotherm. Res., 144, 137–153, doi:10.1016/j.jvolgeores.2004.11.021. Schiavone, D., and M. Loddo (2007), 3-D density model of Mt. Etna volcano (southern Italy), J. Volcanol. Geotherm. Res., 164, 161–175, doi:10.1016/j.jvolgeores.2007.04.016. Siniscalchi, A., S. Tripaldi, M. Neri, S. Giammanco, S. Piscitelli, M. Balasco, B. Behncke, C. Magrì, V. Naudet, and E. Rizzo (2010), Insights into fluid circulation across the Pernicana Fault (Mt. Etna, Italy) and implications for flank instability, J. Volcanol. Geotherm. Res., 193, 137–142, doi:10.1016/j.jvolgeores.2010.03.013. Solaro, G., V. Acocella, S. Pepe, J. Ruch, M. Neri, and E. Sansosti (2010), Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008, J. Geophys. Res., 115, B10405, doi:10.1029/2009JB000820. Tibaldi, A., and G. Groppelli (2002), Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115, 277–302, doi:10.1016/S0377-0273(01) 00305-5. Villaseñor, A., H. M. Benz, L. Filippi, G. De Luca, R. Scarpa, G. Patanè, and S. Vinciguerra (1998), Three-dimensional P wave velocity structure of Mt. Etna, Italy, Geophys. Res. Lett., 25(11), 1975–1978. Voight, B., and D. Elsworth (1997), Failure of volcano slopes, Geotechnique, 47, 1–31, doi:10.1680/geot.1997.47.1.1. Walter, T. R., V. Acocella, M. Neri, and F. Amelung (2005), Feedback processes between magmatism and E-flank movement at Mt. Etna (Italy) during the 2002–2003 eruption, J. Geophys. Res., 110, B10205, doi:10.1029/2005JB003688. Wannamaker, P. E., G. W. Hohmann, and S. H. Ward (1984), Magnetotelluric responses of three-dimensional bodies in layered earths, Geophysics, 49, 1517–1533, doi:10.1190/1.1441777. Weaver, J. T., A. K. Agarwal, and F. E. M. Lilley (2000), Characterisation of the magnetotelluric tensor in terms of its invariants, Geophys. J. Int., 141, 321–336, doi:10.1046/j.1365-246x.2000.00089.x.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorSiniscalchi, A.en
dc.contributor.authorTripaldi, S.en
dc.contributor.authorNeri, M.en
dc.contributor.authorBalasco, M.en
dc.contributor.authorRomano, G.en
dc.contributor.authorRuch, J.en
dc.contributor.authorSchiavone, D.en
dc.contributor.departmentDipartimento di Scienze della Terra e Geoambientali, Università di Bari, Bari, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra e Geoambientali, Università di Bari, Bari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto di Metodologie per l’Analisi Ambientale, Consiglio Nazionale delle Ricerche, Tito, Potenza, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra e Geoambientali, Università di Bari, Bari, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università di Roma Tre, Rome, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università di Roma Tre, Rome, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto di Metodologie per l’Analisi Ambientale (IMAA, CNR), Tito Scalo (Pz), Italy-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.author.deptDipartimento Scienze Geologiche, Università Roma Tre, Roma, Italy-
crisitem.author.deptDipartimento di Geologia e Geofisica, Università di Bari, Bari, Italia-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2012 Siniscalchi et al JGR 2012.pdfMain Article2.7 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

33
checked on Feb 10, 2021

Page view(s) 20

332
checked on Mar 27, 2024

Download(s)

43
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric