Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8051

Authors: Balcone-Boissard, H.*
Boudon, G.*
Ucciani, G.*
Villemant, B.*
Cioni, R.*
Civetta, L.*
Orsi, G.*
Title: Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma–Vesuvius (Italy). Comparison with the Pompeii eruption
Title of journal: Earth and planetary science letters
Series/Report no.: /331-332(2012)
Publisher: Elsevier Science Limited
Issue Date: 17-Apr-2012
DOI: 10.1016/j.epsl.2012.03.011
Keywords: Somma Vesuvius
Avellino
pre-eruptive conditions
magma degassing
Plinian eruption dynamics
Pompeii
Abstract: The eruptive history of Mt. Somma–Vesuvius is characterised by large explosive events: Pomici di Base eruption (22,030±175 yr cal BP), Mercato (8890±90 yr cal BP), Avellino (3945±10 yr cal BP) and Pompeii (79 AD). Pre-eruptive conditions and sin-eruptive degassing processes of the Avellino eruption, the highest-magnitude Plinian event, have been investigated, using volatile contents (F, Cl, H2O) in melt inclusions and residual glass, and textural characteristics of pumice clasts of the 9 fallout layers sampled in detail in a representative sequence. The sequence displays an up-section sharp colour change from white to grey, corresponding to variations in both magma composition and textural characteristics. The pre-eruptive conditions have been constrained by systematic measurements of Cl content in both melt inclusions and matrix glass of pumice clasts. The pumice glass composition varies from Na-rich phonolite (white pumice) to Krich phonolite (grey pumice). The measured Cl values constantly cluster at 5200±400 ppm (buffer value), whatever the composition of the melt, suggesting that the entire magma body was saturated with subcritical fluids. This Cl saturation constrains the pre-eruptive pressures and maximum H2O contents at 200±10 MPa and 6.3±0.2 wt.% H2O for the white pumice melt and 195±15 MPa and 5.2±0.2 wt.% H2O for the grey pumice melt. The fluid phase, mainly composed of a H2O-rich vapour phase and brine, probably accumulated at the top of the reservoir and generated an overpressure able to trigger the onset of the eruption. Magma degassing was rather homogeneous for the white and grey eruptive units, mostly occurring through closed-system processes, leading to a typical Plinian eruptive style. A steady-state withdrawal of an H2O-saturated magma may explain the establishment of a sustained Plinian column. Variation from white to grey pumice is accompanied by decrease of mean vesicularity and increase of mean microcrystallinity and permeability related to significant vesicle coalescence. Despite this, the ascending magma column still evolves under closed-system degassing, without significant gas loss through conduit walls. The Avellino eruption shows numerous similarities with the 79 AD Pompeii eruption in pre-eruptive conditions, degassing processes and eruptive style which are discussed here.
Appears in Collections:04.04.07. Rock geochemistry
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
Balcone et al., 2012.pdfmain article2.19 MBAdobe PDFonly authorized users View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA