Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7955
AuthorsBizzarri, A. 
TitleThe mechanics of lubricated faults: Insights from 3-D numerical models
Issue DateMay-2012
Series/Report no./117(2012)
DOI10.1029/2011JB008929
URIhttp://hdl.handle.net/2122/7955
Keywordsgoverning models
theoretical seismology
Subject Classification04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics 
AbstractThe weakening mechanisms occurring during an earthquake failure are of prominent importance in determining the resulting energy release and the seismic waves excitation. In this paper we consider the fully dynamic response of a seismogenic structure where lubrication processes take place. In particular, we numerically model the spontaneous propagation of a 3-D rupture in a fault zone where the frictional resistance is controlled by the properties of a low viscosity slurry, formed by gouge particles and fluids. This model allows for the description of the fault motion in the extreme case of vanishing effective normal stress, by considering a viscous fault response and therefore without the need to invoke, in the framework of Coulomb friction, the generation of the tensile mode of fracture. We explore the effects of the parameters controlling the resulting governing law for such a lubricated fault; the viscosity of the slurry, the roughness of the fault surfaces and the thickness of the slurry film. Our results indicate that lubricated faults produce a nearly complete stress drop (i.e., a very low residual friction coefficient; mu ~ 0.01), a high fracture energy density (E_G ~ few 10s of MJ/m^2) and significant slip velocities (vpeak ~ few 10s of m/s). The resulting values of the equivalent characteristic slip-weakening distance (d_0_eq = 0.1–0.8 m, depending on the adopted parameters) are compatible with the seismological inferences. Moreover, in the framework of our model we found that supershear ruptures are highly favored. In the case of enlarging gap height we can have the healing of slip or even the inhibition of the rupture. Quantitative comparisons with different weakening mechanisms previously proposed in the literature, such as the exponential weakening and the frictional melting, are also discussed.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
P_032_Bizzarri_2012d.pdf1.77 MBAdobe PDFView/Open
Show full item record

Page view(s)

37
Last Week
0
Last month
0
checked on Jul 25, 2017

Download(s)

14
checked on Jul 25, 2017

Google ScholarTM

Check

Altmetric