Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7852

Authors: Stramondo, S.*
Del Frate, F.
Picchiani, M.
Schiavon, G.
Title: Seismic Source Quantitative Parameters Retrieval From InSAR Data and Neural Networks
Title of journal: IEEE Transactions on Geoscience and Remote Sensing
Series/Report no.: 1/49(2011)
Issue Date: 2011
DOI: 10.1109/TGRS.2010.2050776
Keywords: InSAR
Abstract: The basic idea of this paper relies on the concurrent exploitation of the capabilities of neural networks (NNs) and SAR interferometry (InSAR) for the characterization of a seismic source and the estimation of its geometric parameters. When a moderate-to-strong earthquake occurs, we can apply the InSAR technique to compute a differential interferogram. The earthquake is generated by an active seismogenic fault having its own specific geometry. The corresponding differential interferogram contains, in principle, information concerning the geometry of the seismic source that the earthquake comes from. To perform the inversion operation, a novel approach based on NNs is considered. This requires the generation of a statistically significant number of synthetic interferograms necessary for the network training phase. Each of them corresponds to a different combination of fault geometric parameters. After the training, the network is ready to perform, in real time, the inversion on new differential interferograms. This paper illustrates such a methodology and its validation on a set of experimental data.
Appears in Collections:Papers Published / Papers in press
04.02.05. Downhole, radioactivity, remote sensing, and other methods

Files in This Item:

File Description SizeFormatVisibility
stramondoabstract.docabstract24.5 kBMicrosoft WordView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA