Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7850
AuthorsRoxy, M.* 
Gualdi, S.* 
Drbohlav, H-K. L.* 
Navarra, A.* 
TitleSeasonality in the relationship between El Nino and Indian Ocean dipole
Issue Date2011
Series/Report no.1-2/37(2011)
DOI10.1007/s00382-010-0876-1
URIhttp://hdl.handle.net/2122/7850
KeywordsEl Nino
Subject Classification01. Atmosphere::01.01. Atmosphere::01.01.02. Climate 
AbstractThe seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geo- physical Fluid Dynamics Laboratory Coupled Model, ver- sion 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90–110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circula- tion anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the south- eastern Indian Ocean warms up as the El Nino proceeds,and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the cli- matological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
fulltext-5.pdfmain article3.13 MBAdobe PDFView/Open
Show full item record

Page view(s)

33
Last Week
0
Last month
0
checked on Jul 20, 2017

Download(s)

16
checked on Jul 20, 2017

Google ScholarTM

Check

Altmetric