Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7821
DC FieldValueLanguage
dc.contributor.authorallDi Alessandro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBonilla, L. F.en
dc.contributor.authorallBoore, D. M.en
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallScotti, O.en
dc.date.accessioned2012-02-23T06:56:53Zen
dc.date.available2012-02-23T06:56:53Zen
dc.date.issued2012-04en
dc.identifier.urihttp://hdl.handle.net/2122/7821en
dc.description.abstractWe propose a site-classification scheme based on the predominant period of the site, as determined from the average horizontal-to-vertical (H/V) spectral ratios of ground motion. Our scheme extends Zhao et al.(2006) classifications by adding two classes, the most important of which is defined by flat H/V ratios with amplitudes less than 2. The proposed classification is investigated by using 5%-damped response spectra from Italian earthquake records. We select a dataset of 602 three-component analog and digital recordings from 120 earthquakes recorded at 214 seismic stations within a hypocentral distance of 200 km. Selected events are in the moment-magnituderange 4.0 ≤ Mw ≤ 6.8 and focal depths from a few kilometers to 46 km. We computed H/V ratios for these data and used them to classify each site into one of six classes. We then investigate the impact of this classification scheme on empirical ground-motion prediction equations (GMPEs) by comparing its performance with that of the conventional rock/soil classification. Although the adopted approach results in only a small reduction of the overall standard deviation, the use of H/V spectral ratios in site classification does capture the signature of sites with flat frequency-response, as well as deep and shallow-soil profiles, characterized by long- and short-period resonance, respectively; in addition, the classification scheme is relatively quick and inexpensive, which is an advantage over schemes based on measurements of shear wave velocity.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries2/102 (2012)en
dc.subjectsite effects, site classification, predictive equationsen
dc.titlePredominant-period site classification for response spectra prediction equations in Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber12-36en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.identifier.doi10.1785/0120110084en
dc.relation.referencesAbrahamson, N. A. and W.J. Silva (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismol. Res. Lett., 68, 94–127. Akinci, A., L. Malagnini, F. Sabetta (2010). Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy, Soil Dynamics and Earthquake Engineering, 30, 320–335. Akkar, S. and J.J. Bommer (2006). Influence of long-period filter cut-off on elastic spectral displacements. Earthquake Eng. Struct. Dyn., 35, 1145–1165. Ambraseys, N.N., J. Douglas, S.K. Sarma, and P. Smit (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull. Earthquake Eng., 3, 1–53. Ameri, G., M. Massa, D. Bindi, E. D'Alema, A. Gorini, L. Luzi, S. Marzorati, F. Pacor, R. Paolucci, R. Puglia, and C. Smerzini (2009). The 6 April 2009, Mw 6.3, L'Aquila (Central Italy) earthquake: strong-motion observations, Seism. Res. Lett., 36, 951 - 966, doi: 10.1785/gssrl.80.6.951. Anzidei, M., E. Boschi, V. Cannelli, R. Devoti, A. Esposito, A. Galvani, D. Melini, G. Pietrantonio, F. Riguzzi, V. Sepe, and E. Serpelloni (2009). Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data, Geophys. Res. Lett., 36, L17307, doi:10.1029/2009GL039145. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C., Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (Central Italy), Geoph. Res. Lett., doi: 10.1029/2009GL039293 Bindi, D., F. Pacor, L. Luzi, M. Massa, and G. Ameri (2009a). The Mw 6.3, 2009 L’Aquila earthquake: source, path, and site effects from spectral analysis of strong motion data, Geophys. J. Int., doi:10.1111/j.1365-246X.2009.04392.x. Bindi, D., S. Parolai, F. Cara, G. Di Giulio, G. Ferretti, L. Luzi, G. Monachesi, F. Pacor, and A. Rovelli (2009b). Site amplifications observed in the Gubbio Basin, Central Italy: hints for lateral propagation effects. Bull. seism. Soc. Am., 99(2A):741–760 Bindi, D., L. Luzi, M. Massa, and F. Pacor (2010). Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA), Bull. Earthquake Eng., doi:10.1007/s10518-009-9130-9. Boore, D. M. (2004). Can site response be predicted?, Journal of Earthquake Engineering, 8, Special Issue 1, 1–41 Boore, D. M. (2005). On pads and filters: processing strong-motion data, Bull. Seism. Soc. Am., 95, 745–750. Boore, D.M., and M.W. Asten (2008). Comparisons of Shear-Wave Slowness in the Santa Clara Valley, California, Using Blind Interpretations of Data from Invasive and Noninvasive Methods, Bull. Seism. Soc. Am., 98, 1983-2003. Boore, D. M. and G. M. Atkinson (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra, 24, 99-138 Boore, D. M., and J. J. Bommer (2005). Processing of strong-motion accelerograms: needs, options and consequences, Soil Dyn. Earthq. Eng., 25, 93-115. Boore, D. M., C. D. Stephens, W. B. Joyner (2002). Comment on Baseline Correction of Digital Strong-Motion Data: Examples from the 1999 Hector Mine, California, Earthquake. Bull. Seism. Soc. Am., 92, 1543-1560. Building Seismic Safety Council (2000). The 2000 NEHRP Recommended Provisions for New Buildings and Other Structures: Part I (Provisions) and Part II (Commentary), FEMA 368/369, Federal Emergency Management Agency, Washington, D.C. Cadet, H., P.Y. Bard, A. Rodriguez-Marek (2010). Defining a Standard Rock Site: Propositions Based on the KiK-net Database. Bull. Seism. Soc. Am., 100, 172-195. Cara, F., G. Di Giulio, and A. Rovelli (2003). A study on seismic noise variations at Colfiorito, central Italy: implications for the use of H/V spectral ratios. Geophys. Res. Lett., 30 (18), 1972. Cara, F., G. Di Giulio, G. Milana, P. Bordoni, J. Haines, and A. Rovelli (2010). On the stability and reproducibility of the horizontal-to-vertical spectral ratios on ambient noise: the case study of Cavola, northern Italy, Bull. Seism. Soc. Am., 100, 1263–1275, doi: 10.1785/0120090086 Cauzzi, C., and E. Faccioli (2008). Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records, J. Seismol., doi: 10.1007/s10950-008-9098-y. Çelebi, M., P. Bazzurro, L. Chiaraluce, P. Clemente, L. Decanini, A. DeSortis, W. Ellsworth, A. Gorini, E. Kalkan, S. Marcucci, G. Milana, F. Mollaioli, M. Olivieri, R. Paolucci, D. Rinaldis, A. Rovelli, F. Sabetta and C. Stephens (2010). Recorded Motions of the Mw6.3 April 6, 2009 L’Aquila (Italy) Earthquake and Implications for Building Structural Damage: A Review, Earthquake Spectra, 23, 651–684, doi: 10.1193/1.3450317. CEN, European Committee for Standardization (2004). Eurocode 8: design of structures for earthquake resistance - part 1: general rules, seismic actions and rules for buildings. Bruxelles. Chiarabba, C., P. De Gori, L. Chiaraluce, P. Bordoni, M. Cattaneo, M. De Martin, A. Frepoli, A. Michelini, A. Monachesi, M. Moretti, G. P. Augliera, E. D’Alema, M. Frapiccini, A. Gassi, S. Marzorati, P. Di Bartolomeo, S. Gentile, A. Govoni, L. Lovisa, M. Romanelli, G. Ferretti, M. Pasta, D. Spallarossa, and E. Zumino (2005). Mainshocks and aftershocks of the 2002 Molise seismic sequence, southern Italy, J. Seismol., 9, 487-494. Chiarabba, C., A. Amato, M. Anselmi, P. Baccheschi, I. Bianchi, M. Cattaneo, G. Cecere, L. Chiaraluce, M.G. Ciaccio, P. De Gori, G. De Luca, M. Di Bona, R. Di Stefano, L. Faenza, A. Govoni, L. Improta, F.P. Lucente, A. Marchetti, L. Margheriti, F. Mele, A. Michelini, G. Monachesi, M. Moretti, M. Pastori, M. Piana Agostinetti, D. Piccinini, P. Roselli, D. Seccia, and L. Valoroso (2009). The 2009 L’Aquila (central Italy) MW6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627. Chioccarelli, E., and I. Iervolino (2010). Near-source seismic demand and pulse-like records: A discussion for L’Aquila earthquake, Earthquake Engng. Struct. Dyn., DOI: 10.1002/eqe.987. Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009), Rupture history of the 2009 L'Aquila earthquake from non-linear joint inversion of strong motion and GPS data, Geophys. Res. Lett. 36, L19304, doi:10.1029/2009GL039795 Cocco, M., and A. Rovelli (1989). Evidence of the variation of stress drop between normal and thrust faulting earthquakes in Italy, J. Geoph. Res., 94, 9399 – 9416. Converse, A. M., and A. G. Brady (1992). BAP - basic strong-motion accelerogram processing software; Version 1.0. United States Geological Survey Open-File Report, 174; 92–296A. De Luca, G., S. Marcucci, G. Milana, and T. Sano' (2005). Evidence of Low-Frequency Amplification in the City of L'Aquila, Central Italy, through a Multidisciplinary Approach Including Strong- and Weak-Motion Data, Ambient Noise, and Numerical Modeling. Bull. Seism. Soc. Am., 95, 1469-1481. Di Alessandro, C., A. Rovelli, G. Milana, S. Marcucci, L.F. Bonilla, and D.M. Boore (2009). A New Site Classification Scheme for Italian Accelerometric Stations, in the 2009 SSA Annual Meeting, Monterey, CA, USA, 8-10 April 2009, paper n.63 Di Capua G., Lanzo G., Peppoloni S., Pessina V., Scasserra G. (2011).The ITACA recording stations: general information and site classification, Bull Earthq. Eng. (submitted) Di Giulio, G., C. Cornou, M. Ohrnberger, M. Wathelet, and A. Rovelli (2006). Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperture arrays analysis of ambient vibrations in a small-size alluvial basin, Colfiorito, Italy, Bull. Seism. Soc. Am., 96, 1915-1933, doi: 10.1785/0120060119. Ekström, G., A. Morelli, E. Boschi, and A. M. Dziewonski (1998). Moment tensor analysis of the central Italy earthquake sequence of September–October 1997, Geophys. Res. Lett., 25, 1971–1974. Fukushima Y. and T. Tanaka (1990). A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan, Bull. Seism. Soc. Am., 80, 757-783. Fukushima Y., C. Berge-Thierry, P. Volant, D. A. Griot-Pommera, and F. Cotton (2003). Attenuation relation for west Eurasia determined with recent near-fault records from California, Japan and Turkey, J. Earthq Eng., 7, 1-26. Fukushima Y., L. F. Bonilla, O. Scotti, and J. Douglas (2007). Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations, J. Earthq Eng., 11, 712-724. Ghasemi, H., M. Zare, Y. Fukushima, F. Sinaeian (2009). Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN), Soil Dynamics and Earthquake Engineering, 29, 121–132 Guillier, B., J.-L. Chatelain, S. Bonnefoy-Claudet, E. Haghshenas (2007). Use of Ambient Noise: From Spectral Amplitude Variability to H/V Stability, J. Earthq Eng., 11 (6), 925-942. Japan Road Association (1980). Specifications for Highway Bridges Part V, Seismic Design, Maruzen Co., LTD. Japan Road Association (1990). Specifications for Highway Bridges Part V, Seismic Design, Maruzen Co., LTD Joyner, W. B. and D. M. Boore (1993). Methods for regression analysis of strong-motion data, Bull. Seism. Soc. Am., 83, 469-487. Lang, D.H. and Schwarz, J. (2006): Instrumental subsoil classification of Californian strong-motion sites based on single-station measurements. Proceedings of the Eighth U.S. National Conference on Earthquake Engineering, San Francisco, United States, 2006. Luzi L., Sabetta F., Hailemikael S., Bindi D., Pacor F., and F. Mele (2008). ITACA (ITalian ACcelerometric Archive): a web portal for the dissemination of Italian strong motion data. Seism. Res. Lett. 79(5): 717–723. doi:10. 1785/gssrl.79.5 Luzi L., M. Gallipoli, M.Mucciarelli D. Bindi and F. Pacor (2011). Testing of diffrent seismic parameters for seismic parameters for site classification. Submitted to Bull. Earthq. Eng. Malagnini, L., A. Rovelli, S. E. Hough, and L. Seeber (1993). Site amplification estimates in the Garigliano valley, central Italy, based on dense array measurements of ambient noise, Bull. Seism. Soc. Am., 83, 1744-1755. Massa, M., F. Pacor, L. Luzi, D. Bindi, G. Milana, F. Sabetta, A. Gorini, and S. Marcucci (2009). The ITalian ACcelerometric Archive (ITACA): processing of strong-motion data, Bull. Earthq. Eng., D.O.I. 10.1007/s10518-009-9152-3 Mucciarelli M., M.R. Gallipoli, and M. Arcieri (2003). The stability of Horizontal-to-Vertical Spectral Ratio by triggered noise and earthquake recordings, Bull. Seism. Soc. Am., 93, 1407-1412. Pacor F., R. Paolucci, A. De Sortis, A. Gorini and A. Spinelli (2011). Overview of the Italian strong motion database 1.0. Submitted to Bull Earthq. Eng. Paolucci, R., A. Rovelli, E. Faccioli, C. Cauzzi, D. Finazzi, M. Vanini, C. Di Alessandro, and G. Calderoni (2008). On the reliability of long period response spectra ordinates from digital accelerograms, Earthquake Engng. Struct. Dyn., 37, 697–710. Park, D. and Y.M.A. Hashash (2004). Probabilistic seismic hazard analysis with non linear site effects in the Mississippi embayment, Proc. 13th World Conf. Earthq. Eng, Vancouver, CD-Rom Edition, paper n. 1549. Pino, N.A., and F. Di Luccio (2009). Source complexity of the 6 April 2009 L’Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis, Geophys. Res. Lett., 36, /L23305, doi:10.1029/2009GL041331. Pitilakis, K., C. Gazepis, and A. Anastasiadis (2006). Design response spectra and soil classification for seismic code provisions, in Proc. of the Athens Workshop, Geotechnical Evaluation and Application of the Seismic Eurocode EC8, 31–46. Pondrelli, S., G. Ekström, and A. Morelli (2001). Seismotectonic re-evaluation of the 1976 Friuli, Italy, seismic sequence, Journal of Seismology, 5, 73-83. S4 project – Deliverable D8 (2009). Progress report on Identification of ITACA sites and records with distinctive features in their seismic response., May 2009. Available from http://esse4.mi.ingv.it/. Rodriguez-Marék, A., J. D. Bray, and N. A. Abrahamson (2001). An empirical geotechnical seismic site response procedure, Earthquake Spectra, 17, 65–87. Scasserra, G., J.P. Stewart, P. Bazzurro, G. Lanzo, and F. Mollaioli (2009). A Comparison of NGA Ground-Motion Prediction Equations to Italian Data, Bull. Seism. Soc. Am., 99(5), 2961–2978, doi: 10.1785/0120080133 Scherbaum, F., J. Schmedes, and F. Cotton (2004). On the conversion of source-to-site distance measures for extended earthquake source models, Bull. Seism. Soc. Am., 94, 1053-1069. SESAME Project – Deliverable D23.12 – Guidelines for the implementation of the H/V spectral ratio technique on ambient vibration measurement, processing and interpretation: http://sesame-fp5.obs.ujf-grenoble.fr/Delivrables/Del- D23_HV_User_Guidelines.pdf, 2005. Spudich, P., W. B. Joyner, A. G. Lindh, D. M. Boore, B. M. Margaris, and J.B Fletcher (1999). SEA99: a revised ground motion prediction relation for use in extensional tectonic regimes, Bull. Seism. Soc. Am., 89, 1156–70. Steidl, J.H. (2000). Site Response in Southern California for Probabilistic Seismic Hazard Analysis. Bull. Seism. Soc. Am., 90, 149 – 169. Working Group ITACA (2009) - Data Base of the Italian strong motion records: http://itaca.mi.ingv.it Xia, J., R.D. Miller, C.B. Park, J.A. Hunter, J.B. Harris, and J. Ivanov (2002). Comparing shear-wave velocity profiles from multichannel analysis of surface wave with borehole measurements, Soil Dyn. Earthq. Eng., 22, 181-190. Yamazaki, F., and M. A. Ansary (1997). Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization, Earthquake Eng. Struct. Dyn. 26, 671–689. Zhao, J. X., K. Irikura, J. Zhang, Y. Fukushima, P. G. Somerville, T. Saiki, H. Okada, and T. Takahashi (2004). Site classification for strong-motion stations in Japan using H/V response spectral ratio, in 13th World Conference of Earthquake Engineering, Vancouver, B.C., Canada, 1–6 August 2004, paper no. 1278. Zhao, J. X., K. Irikura, J. Zhang, Y. Fukushima, P. G. Somerville, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi and H. Ogawa (2006), An Empirical Site-Classification Method for Strong-Motion Stations in Japan Using H/V Response Spectral Ratio, Bull. Seism. Soc. Am., 96, 914-925.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0037-1106en
dc.relation.eissn1943-3573en
dc.contributor.authorDi Alessandro, C.en
dc.contributor.authorBonilla, L. F.en
dc.contributor.authorBoore, D. M.en
dc.contributor.authorRovelli, A.en
dc.contributor.authorScotti, O.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptU.S. Geological Survey, Menlo Park, California, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptInstitut de Radioprotection et de Suretè Nuclèaire, Fontenay-aux-Roses, France-
crisitem.author.orcid0000-0002-6640-9090-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Predominant_period_site_classes_italian_stations_FINAL_3rdMarch20.pdfmain article1.16 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

60
checked on Feb 10, 2021

Page view(s) 50

180
checked on Apr 20, 2024

Download(s) 10

790
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric