Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7641
DC FieldValueLanguage
dc.contributor.authorallSmith, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSpeiss, R.; Dipartimento di Geoscienze, Universita` degli Studi di Padova, 1 Via Giotto, 35137 Padova, Italyen
dc.contributor.authorallBilli, A.; Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Salaria km 29.3, 00015 Monterotondo (Rome), Italyen
dc.date.accessioned2012-01-27T13:49:06Zen
dc.date.available2012-01-27T13:49:06Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7641en
dc.description.abstractAbstract—Earthquakes in central Italy, and in other areas worldwide, often nucleate within and rupture through carbonates in the upper crust. During individual earthquake ruptures, most fault displacement is thought to be accommodated by thin principal slip zones. This study presents detailed microstructural observations of the slip zones of the seismically active Tre Monti normal fault zone. All of the slip zones cut limestone, and geological constraints indicate exhumation from\2 km depth, where ambient temperatures are 100 C. Scanning electron microscope observations suggest that the slip zones are composed of 100% calcite. The slip zones of secondary faults in the damage zone contain protocataclastic and cataclastic fabrics that are cross-cut by systematic fracture networks and stylolite dissolution surfaces. The slip zone of the principal fault has much more microstructural complexity, and contains a 2–10 mm thick ultracataclasite that lies immediately beneath the principal slip surface. The ultracataclasite itself is internally zoned; 200–300 lm-thick ultracataclastic sub-layers record extreme localization of slip. Syn-tectonic calcite vein networks spatially associated with the sub-layers suggest fluid involvement in faulting. The ultracataclastic sub-layers preserve compelling microstructural evidence of fluidization, and also contain peculiar rounded grains consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine-grained calcite. These ‘‘clast-cortex grains’’ closely resemble those produced during layer fluidization in other settings, including the basal detachments of catastrophic landslides and saturated high-velocity friction experiments on clay-bearing gouges. An overprinting foliation is present in the slip zone of the principal fault, and electron backscatter diffraction analyses indicate the presence of a weak calcite crystallographic preferred orientation (CPO) in the fine-grained matrix. The calcite c-axes are systematically inclined in the direction of shear. We suggest that fluidization of ultracataclastic sub-layers and formation of clast-cortex grains within the principal slip zone occurred at high strain rates during propagation of seismic ruptures whereas development of an overprinting CPO occurred by intergranular pressure solution during post-seismic creep. Further work is required to document the range of microstructures in localized slip zones that cross-cut different lithologies, and to compare natural slip zone microstructures with those produced in controlled deformation experiments.en
dc.language.isoEnglishen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries/168 (2011)en
dc.subjectfrictionen
dc.titlePrincipal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber2365–2393en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zonesen
dc.identifier.doi10.1007/s00024-011-0267-5en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSmith, S.en
dc.contributor.authorDi Toro, G.en
dc.contributor.authorSpeiss, R.en
dc.contributor.authorBilli, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Geoscienze, Universita` degli Studi di Padova, 1 Via Giotto, 35137 Padova, Italyen
dc.contributor.departmentIstituto di Geologia Ambientale e Geoingegneria, CNR, Via Salaria km 29.3, 00015 Monterotondo (Rome), Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Geoscienze, Universita` degli Studi di Padova, 1 Via Giotto, 35137 Padova, Italy-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.orcid0000-0002-6368-1873-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011_Smith_et_al_PAGEOPHYS.pdfmain paper2.8 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

88
checked on Feb 10, 2021

Page view(s) 50

174
checked on Apr 24, 2024

Download(s)

21
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric