Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7633
DC FieldValueLanguage
dc.contributor.authorallFrondini, F.; Dipartimento di Scienze della Terra, Universita` di Perugia, Piazza dell’Universita`, Perugia, Italyen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Universita` di Perugia, Piazza dell’Universita`, Perugia, Italyen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMorgantini, N.; ARPA Umbria, Via Pievaiola, San Sisto, Perugia, Italyen
dc.date.accessioned2012-01-27T13:03:06Zen
dc.date.available2012-01-27T13:03:06Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7633en
dc.description.abstractThe elemental fluxes and heat flow associated with large aquifer systems can be significant both at local and at regional scales. In fact, large amounts of heat transported by regional groundwater flow can affect the subsurface thermal regime, and the amount of matter discharged towards the surface by large spring systems can be significant relative to the elemental fluxes of surface waters. The Narni-Amelia regional aquifer system (Central Italy) discharges more than 13 m3 sec)1 of groundwater characterised by a slight thermal anomaly, high salinity and high pCO2. During circulation in the regional aquifer, groundwater reacts with the host rocks (dolostones, limestones and evaporites) and mixes with deep CO2-rich fluids of mantle origin. These processes transfer large amounts of dissolved substances, in particular carbon dioxide, and a considerable amount of heat towards the surface. Because practically all the water circulating in the Narni-Amelia system is discharged by few large springs (Stifone-Montoro), the mass and energy balance of these springs can give a good estimation of the mass and heat transported from the entire system towards the surface. By means of a detailed mass and balance of the aquifer and considering the soil CO2 fluxes measured from the main gas emission of the region, we computed a total CO2 discharge of about 7.8 · 109 mol a)1 for the whole Narni-Amelia system. Finally, considering the enthalpy difference between infiltrating water and water discharged by the springs, we computed an advective heat transfer related to groundwater flow of 410 ± 50 MW.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeofluidsen
dc.relation.ispartofseries2/12(2012)en
dc.subjectcarbon dioxide degassingen
dc.subjectheat flowen
dc.subjectregional aquiferen
dc.titleRegional groundwater flow and interactions with deep fluids in western Apennine: the case of Narni-Amelia chain (Central Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber182-196en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1111/j.1468-8123.2011.00356.xen
dc.relation.referencesAiuppa A, Allard P, D’Alessandro W, Michel A, Parello F, Treuil M, Valenza M (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochimica et Cosmochimica Acta, 64, 1827–41. Baldi P, Bellani S, Ceccarelli A, Fiordelisi A, Squarci P, Taffi L (1995) Geothermal anomalies and structural features of southern Tuscany – World Geothermal Congress Proceedings – Florence, Italy, May 1995, 1287–91. Barchi MR, Minelli GR, Pialli G (1998) The CROP 03 profile: a synthesis of results on deep structures of the Northern apennines. Memorie Societa` Geologica Italiana, 52, 383–400. Barelli A, Celati R, Manetti G (1977) Gas–water interface rise during early exploitation tests in Alfina geothermal field (Northern Latium, Italy). Geothermics, 6, 199–208. Boncio P, Brozzetti F, Lavecchia G, Bacheca A, Minelli G (2000) Note stratigrafiche e strutturali alla carta geologica del settore centrale della Catena Narnese-Amerina (Umbria, scala 1:25.000). Bollettino della Societa` Geologica Italiana, 119, 69–83. Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia centrale. Memorie della Societa` Geologica Italiana, 35, 991– 1012. Buonasorte G, Cataldi R, Ceccarelli A, Costantini A, D’Offizi S, Lazzarotto A, Ridolfi A, Baldi P, Barelli A, Bertini G, Bertrami R, Calamai A, Cameli G, Corsi R, Dacquino C, Fiordalisi A, Grezzo A, Lovari F (1988) Ricerca ed esplorazione nell’area geotermica di Torre Alfina (Lazio-Umbria). Bollettino della Societa` Geologica Italiana, 107, 265–337. Caliro S, Chiodini G, Avino R, Cardellini C, Frondini F (2005) Volcanic degassing at Somma–Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater. Applied Geochemistry, 20, 1060–76. doi: 10.1016/j.apgeochem.2005.02.002. Capasso G, Inguaggiato S (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13, 631–42. Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. Journal of Geophysical Research, 108(B9), 2425. doi: 10.1029/2002JB002165 Celati R, Grassi S, Calore C (1990) Overflow thermal springs of Tuscany (Italy). Journal of Hydrology, 118, 191–207. Chiodini G, Comodi P, Giaquinto S, Mattioli B, Zanzari AR (1988) Cold groundwater temperatures and conductive heat flow in the Mt. Amiata geothermal area, Tuscany, Italy. Geothermics, 17, 645–56. Chiodini G, Cioni R, Guidi M, Marini L, Raco B (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13, 543–52. Chiodini G, Frondini F, Kerrick DM, Rogie J, Parello F, Peruzzi L, Zanzari AR (1999) Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology, 159, 205–22. Chiodini G, Frondini F, Cardellini C, Parello F, Peruzzi L (2000) Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. Journal of Geophysical Research, 105, 8423–34. Chiodini G, Cardellini C, Amato A, Boschi E, Caliro S, Frondini F, Ventura G (2004) Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophysical Research Letters, 31, L07615. doi: 10.1029/2004GL019480. Chiodini G, Caliro S, Cardellini C, Frondini F, Inguaggiato S, Matteucci F (2011) Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth and Planetary Science Letters, 304, 389–98. doi: 10.1016/j.epsl.2011.02.016. Collettini C, Barchi M, Pauselli C, Federico C, Pialli G (2000) Seismic expression of active extensional faults in northern Umbria (Central Italy). Journal of Geodynamics, 29, 309–21. Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and Users Guide. Applied Geostatistical Series. Oxford University Press, New York. Di Matteo L, Dragoni W, Valigi D (2009) Update on knowledge of water resources of Amelia Mountains (Central Italy). Italian Journal of Engineering Geology and Environment, 1, 83–96. Fouillac C, Fouillac AM, Chery L (1991) Isotopic studies of deep and surface waters in the French Massif Central. Proceedings Intern. Symp. Isot. Techn. Water Resour. Developm., pp. 646–8. IAEA, Vienna, Austria. Frondini F (2008) Geochemistry of regional aquifer systems hosted by carbonate-evaporite formations in Umbria and southern Tuscany (central Italy). Applied Geochemistry, 23, 2091– 104. doi: 10.1016/j.apgeochem.2008.05.001. Ingebritsen SE, Sanford WE, Neuzil E (2006) Groundwater in Geologic Processes. Cambridge University Press, Cambridge. International Organization for Standardization (1975) Standard atmosphere. ISO 2533:1975. Italiano F, Martinelli G, Bonfanti P, Caracausi A (2009) Longterm (1997–2007) geochemical monitoring of gases from the Umbria-Marche region. Tectonophysics, 476, 282–96. doi: 10.1016/j.tecto.2009.02.040. Keenan JH, Keyes FG, Hill PG, Moore JG (1969) Steam Tables – Thermodynamic Properties of Water Including Vapor, Liquid and Solid Phases (International Edition – metric units). Wiley, New York Lavecchia G (1990) The Tyrrehenian-Apennine system: structural setting and seismotectogenesis. Tectonophysics, 47, 263–96. Loddo M, Mongelli F (1978) Heat flow in Italy. Pure and Applied Geophysics, 117, 135–49. doi: 10.1007/BF00879741. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology, 270, 75– 88. Lucente FP, De Gori P, Margheriti L, Piccinni D, Di Bona M, Chiarabba C, Agostinetti NP (2010) Temporal variation of seismic velocity and anisotropy before the 2009 Mw 6.3 L’Aquila, Italy earthquake. Geology, 38, 1015–8. doi: 10.1130/ G31463.1. Manga M (1998) Advective heat transport by low-temperature discharge in the Oregon cascades. Geology, 26, 799–802. Manga M, Kirchner W (2004) Interpreting the temperature of water at cold springs and the importance of gravitational potential energy. Water Resources Research, 40, W05110. doi: 10.1029/2003WR002905. Mastrolillo L, Baldoni T, Banzato F, Boscherini A, Cascone D, Checcucci R, Petitta M, Boni C (2009) Quantitative hydrogeological analysis of the carbonate domain of the Umbria region. Italian Journal of Engeneering Geology and Environment, 1, 137–55. Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJP (2004) Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427, 724–7. doi: 10.1038/nature02251. Minissale A, Vaselli O, Tassi F, Magro G, Grechi GP (2002) Fluid mixing in carbonate acquifers near Rapolano (central Italy): chemical and isotopic constraints. Applied Geochemistry, 17, 1329–42. Morgantini N, Frondini F, Cardellini C (2009) Natural trace elements baselines and dissolved loads in groundwater from carbonate aquifers of central Italy. Physics and Chemistry of the Earth, 34, 520–9. doi: 10.1016/j.pce.2008.05.004. Rogie JD, Kerrick DM, Chiodini G, Frondini F (2000) Flux measurements of non-volcanic CO2 emission from some vents in central Italy. Journal of Geophysical Research, 105, 8435–46. Rybach L (1981) Geothermal systems, conductive heat flow, geothermal anomalies. In: Geothermal Systems: Principles and Case Histories (eds Rybach L, Muffler LJP), pp. 3–35. John Wiley, New York. Smith L, Chapman DS (1983) On the thermal effects of groundwater flow. Journal of Geophysical Research, 88, 593–608. Sorey ML, Lewis RE (1976) Convective heat flow from hot springs in the Long Valley Caldera, Mono County. California. Journal of Geophysical Research, 81, 785–91. Terakawa T, Zoporowski A, Galvan B, Miller SA (2010) Highpressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms. Geology, 38, 995–8. doi: 10.1130/G31457.1. Vuataz FD, Goff F (1986) Isotope geochemistry of thermal and nonthermal waters in the Valles caldera, Jemez Mountains, Northern New Mexico. Journal of Geophysical Research, 91, 1835–53. Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chemical Reviews, 77, 219–62.en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.relation.issn1468-8115en
dc.relation.eissn1468-8123en
dc.contributor.authorFrondini, F.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorMorgantini, N.en
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Perugia, Piazza dell’Universita`, Perugia, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Perugia, Piazza dell’Universita`, Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, Universita` di Perugia-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptARPA Umbria-
crisitem.author.orcid0000-0002-7539-9541-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Frondini et al., 2011 Narnese-Amerina.pdf655.5 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

7
checked on Feb 10, 2021

Page view(s) 10

465
checked on Apr 13, 2024

Download(s)

29
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric