Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7609
DC FieldValueLanguage
dc.contributor.authorallLolli, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallGasperini, P.; Università di Bolognaen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2012-01-27T09:03:00Zen
dc.date.available2012-01-27T09:03:00Zen
dc.date.issued2011-01en
dc.identifier.urihttp://hdl.handle.net/2122/7609en
dc.description.abstractWe analysed the time evolution of the decay parameters of the L’Aquila aftershock sequence, neglecting spatial variability. During the first two months after the main shock, the sequence showed quite unusual properties: a particularly slow decay of the aftershock rate that progressively accelerated and a very scarce sensitivity to the occurrence of strong aftershocks. In the first few days, the decrease of the aftershock rate was compatible with an Omori’s process with power-law exponent p ≈ 0.5. The successive increase of the exponent up to about p = 1.2 in the following months can be interpreted as the emergence of a negative exponential regime that has been found to control the decay of other sequences occurred in Italy and California. In fact, two decay models, even including a negative exponential term, reproduce the aftershock rate in the first 60 days significantly better than the Omori’s law according to the Akaike information criteria. In this time interval, the strongest aftershocks do not seem to have produced significant increases of the aftershock rate while a couple of them seem to be preceded, rather than followed, by a slight increase of the rate. Consequently, epidemic models do not perform significantly better than non-epidemic ones for durations shorter than 60–80 days. A slow change of decay parameters seems to have been preceded a clear increase of the rate occurred 80 days after the main shock in correspondence of a relatively strong aftershock in the main fault area and of the activation of a previously silent fault segment in the NW. As a consequence of such reactivation, epidemic models become preferable with respect to non-epidemic ones for longer durations. The L’Aquila main shock productivity is the highest ever observed in Italy since the installation of a modern seismic network in Italy in mid 1980s, as the number of generated aftershock is from three to 10 times higher than for any previous earthquake of similar magnitude.en
dc.language.isoEnglishen
dc.publisher.nameWILEYen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/185 (2011)en
dc.subjectEarthquake interaction, forecasting, and prediction; Statistical seismologyen
dc.titleTime variations of aftershock decay parameters of the 2009 April 6 L’Aquila (central Italy) earthquake: evidence of the emergence of a negative exponential regime superimposed to the power lawen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber764–774en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.1111/j.1365-246X.2011.04967.xen
dc.relation.referencesAbramowitz, M. & Stegun, I.A., 1972. Handbook of Mathematical Functions, 10th edn, pp. 1046, Dover, New York, NY. Akaike, H., 1974. A new look at the statistical model identification, IEEE Trans. Autom. Contl. AC 19, 716–723. Amato, A. & Mele, F.M., 2008. Performance of the INGV National Seismic Network from 1997 to 2007, Ann. Geophys., 51, 417–431. Amato, A. et al., 1998. The 1997 Umbria-Marche, Italy, earthquake sequence: a first look at the mainshocks and aftershocks, Geophys. Res. Lett., 25(15), 2861–2864. Ben-Zion, Y. & Lyakhovsky, V., 2006. Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology, Geophys. J. Int., 165, 197–210, doi:10.1111/j.1365-246X.2006.02878.x. Chiarabba, C. et al., 2009. The 2009 L’Aquila (central Italy) Mw 6.3 earthquake: main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:101029/2009GL039627. Christophersen, A. & Smith, E.G.C., 2008. Foreshock rates from aftershock abundance, Bull. seism. Soc. Am., 98, 2133–2148, doi:10.1785/0120060143. Console, R., Murru, M. & Lombardi, A.M., 2003. Refining earthquake clustering, J. geophys. Res., 108(B10), 2468, doi:10.1029/2002JB002130. Deschamps A. et al., 2000. Spatio-temporal distribution of seismic activity during the Umbria-Marche crisis, 1997, J. Seismol., 4, 377–386. Dieterich, J.H., 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering, J. geophys. Res., 99, 2601–2618, doi:10.1029/93JB02581. Eberhart-Phillips, D., 1998. Aftershocks sequence parameter in New Zealand, Bull. seism. Soc. Am., 88, 1095–1097. Felzer, K.R., Abercrombie, R.E. & Ekstrom, G., 2004. A common origin for ¨ aftershocks, foreshocks, and multiplets. Bull. seism. Soc. Am., 94, 88–98. Gasperini, P. & Lolli, B., 2006. Correlation between the parameters of the aftershock rate equation: implications for the forecasting of future sequences, Phys. Earth planet. Inter., 156, 41–58, doi:10.1016/j.pepi.2006.01.005. Gasperini, P. & Lolli, B., 2009. An empirical comparison among aftershock decay models, Phys. Earth planet. Inter., 175, 183–193, doi:10.1016/j.pepi.2009.03.011. Gerstenberger, M.C., Wiemer, S., Jones, L.M. & Reasenberg, P.A., 2005. Real-time forecasts of tomorrow’s earthquakes in California, Nature, 435, 328–331, doi:10.1038/nature03622. Hainzl, S., Christophersen, A. & Enescu, B., 2008. Impact of earthquake rupture extensions on parameter estimations of point-process models, Bull. seism. Soc. Am., 98, 2066–2072. Helmstetter, A., 2003. Is earthquake triggering driven by small earthquakes?, Phys. Rev. Lett., 91, 58501, doi:10.1103/PhysRevLett91.058501. Helmstetter, A., Kagan, Y.Y. & Jackson, D.D., 2005. Importance of small earthquakes for stress transfers and earthquake triggering. J. geophys. Res., 110, B05S08, doi:10.1029/2004JB003286. Hurvich, C.M. & Tsai, C.-L., 1989. Regression and time series model selection in small samples, Biometrika, 76, 297–307, doi:10.1093/biomet/76.2.297. Klein, F.W. & Wright, T., 2008. Exponential decline of aftershocks of the M7.9 1868 great Kau earthquake, Hawaii, through the 20th century, J. geophys. Res., 113, B09310, doi:10.1029/2007JB005411. Lolli, B. & Gasperini, P., 2003. Aftershocks hazard in Italy. Part I: estimation of time magnitude distribution model parameters and computation of probabilities of occurrence, J. Seismol., 7, 235–257. Lolli, B. & Gasperini, P., 2006. Comparing different models of aftershock rate decay: the role of catalog incompleteness in the first times aftermainshock, Tectonophysics, 423, 43–59, doi:10.1016/j.tecto.2006.03.025. Lolli, B., Boschi, E. & Gasperini, P., 2009. A comparative analysis of different models of aftershock rate decay by maximum likelihood estimation of simulated sequences, J. geophys. Res., 114, B01305, doi:10.1029/2008JB005614. Marsan D., 2005. The role of small earthquakes in redistributing crustal elastic stress. Geophys. J. Int., 163, 141–151, doi:10.1111/j.1365- 246X.2005.02700.x. Marzocchi W. & Lombardi, A.M., 2009. Real-time forecasting following a damaging earthquake, Geophys. Res. Lett., 36, L21302, doi:10.1029/2009GL040233. Narteau, C., Shebalin, P. & Holschneider, M., 2002. Temporal limits of the power law aftershock decay rate, J. geophys. Res., 107(B12), 2359, doi:10.1029/2002JB001868.Narteau, C., Shebalin, P., Hainzl, S., Zoller, G. & Holschneider, M., ¨ 2003. Emergence of a band-limited power law in the aftershock decay rate of a slider-block model, Geophys. Res. Lett., 30, 1568, doi:10.1029/2003GL017110. Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27. Omori, F., 1894. On after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo, 7, 111–200. Peng, Z., Vidale, J.E. & Houston, H., 2006. Anomalous early aftershock decay rate of the 2004 Mw6.0 Parkfield, California, earthquake, Geophys. Res. Lett., 33, L17307, doi:10.1029/2006GL026744. Peng, Z., Vidale, J.E., Ishii, M. & Helmstetter, A., 2007. Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan, J. geophys. Res., 112, B03306, doi:10.1029/2006JB004386. Pondrelli, S., Salimbeni, S., Morelli, A., Ekstrom, G., Olivieri, M. & ¨ Boschi, E., 2010. Seismic moment tensors of the April 2009, L’ Aquila (Central Italy), earthquake sequence, Geophys. J. Int., 180, 238–242, doi:10.111/j.1365-246X.2009.04418.x. Reasenberg, P.A. & Jones, L.M., 1989. Earthquake hazard after a mainshock in California, Science, 243, 1173–1176. Utsu, T., 1961. A statistical study of the occurrence of aftershocks, Geophys. Mag., 30, 521–605. Zhuang, J., Ogata, Y. & Vere-Jones, D., 2004. Analyzing earthquake clustering features by using stochastic reconstruction, J. geophys. Res., 109(B5), B05301, doi:10.1029/2003jb002879. Zhuang, J.C., Chang, C. P., Ogata, Y. & Chen, Y.I. 2005. A study on the background and clustering seismicity in the Taiwan region by using point process models, J. geophys. Res., 110(B5), B05S18, doi:10.1029/2003jb003157.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLolli, B.en
dc.contributor.authorGasperini, P.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentUniversità di Bolognaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptUniversità di Bologna-
crisitem.author.orcid0000-0003-4186-9055-
crisitem.author.orcid0000-0002-5314-0563-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
08_Lolli_Gasperini_Boschi_2011_GJI.pdfpdf1 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

6
checked on Feb 10, 2021

Page view(s) 50

198
checked on Apr 24, 2024

Download(s)

25
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric