Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7588
DC FieldValueLanguage
dc.contributor.authorallStorto, A.; Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.authorallDobricic, S.; Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallDi Pietro, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2012-01-27T07:52:51Zen
dc.date.available2012-01-27T07:52:51Zen
dc.date.issued2011-03en
dc.identifier.urihttp://hdl.handle.net/2122/7588en
dc.description.abstractA global ocean three-dimensional variational data assimilation system was developed with the aim of assimilating along-track sea level anomaly observations, along with in situ observations from bathythermographs and conventional sea stations. All the available altimetric data within the period October 1992–January 2006 were used in this study. The sea level corrections were covariated with vertical profiles of temperature and salinity according to the bivariate definition of the background-error vertical covariances. Sea level anomaly observational error variance was carefully defined as a sum of instrumental, representativeness, observation operator, and mean dynamic topography error variances. The mean dynamic topography was computed from the model long-term mean sea surface height and adjusted through an optimal interpolation scheme to account for observation minus first-guess biases. Results show that the assimilation of sea level anomaly observations improves the model sea surface height skill scores as well as the subsurface temperature and salinity fields. Furthermore, the estimate of the tropical and subtropical surface circulation is clearly improved after assimilating altimetric data. Nonnegligible impacts of the mean dynamic topography used have also been found: compared to a gravimeter-based mean dynamic topography the use of the mean dynamic topography discussed in this paper improves both the consistency with sea level anomaly observations and the verification skill scores of temperature and salinity in the tropical regions. Furthermore, the use of a mean dynamic topography computed from the model long-term sea surface height mean without observation adjustments results in worsened verification skill scores and highlights the benefits of the current approach for deriving the mean dynamic topography.en
dc.description.sponsorshipEuropean Commission WP4 Fondazione Cassa di Risparmio di Bologna Cnesen
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofMonthly Weather Reviewen
dc.relation.ispartofseries3/139 (2011)en
dc.subjectData assimilationen
dc.subjectSatellite observationsen
dc.subjectOcean modelsen
dc.subjectSea levelen
dc.subjectIn situ observationsen
dc.subjectVariational analysisen
dc.titleAssimilating Along-Track Altimetric Observations through Local Hydrostatic Adjustment in a Global Ocean Variational Assimilation Systemen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber738-754en
dc.identifier.URLhttp://journals.ametsoc.org/doi/pdf/10.1175/2010MWR3350.1en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modelingen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysisen
dc.identifier.doi10.1175/2010MWR3350.1en
dc.relation.referencesAlessandri, A., A. Borrelli, S. Masina, A. Cherchi, S. Gualdi, A. Navarra, P. Di Pietro, and A. Carril, 2010: The INGV–CMCC Seasonal Prediction System: Improved ocean initial conditions. Mon. Wea. Rev., 138, 2930–2952. Alves, J. O. S., K. Haines, and D. L. T. Anderson, 2001: Sea level assimilation experiments in the tropical Pacific. J. Phys. Oce- anogr., 31, 305–323. Bellucci, A., S. Masina, P. Di Pietro, and A. Navarra, 2007: Using temperature salinity relations in a global ocean implemen- tation of a multivariate data assimilation scheme. Mon. Wea. Rev., 135, 3785–3807. Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 2938–2954. Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 1190–1208. Cardinali, C., S. Pezzulli, and E. Andersson, 2004: Influence-matrix diagnostic of a data assimilation system. Quart. J. Roy. Meteor. Soc., 130, 2767–2786. Cazenave, A., K. Dominh, S. Guinehut, E. Berthier, W. Llovel, G. Ramillien, M. Ablain, and G. Larnicol, 2009: Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Change, 65, 83–88. Chapnik, B., G. Desroziers, F. Rabier, and O. Talagrand, 2006: Di- agnosis and tuning of observational error in a quasi-operational data assimilation setting. Quart. J. Roy. Meteor. Soc., 132, 543–565. Cheney, R., L. Miller, R. Agreen, N. Doyle, and J. Lillibridge, 1994: TOPEX/Poseidon: The 2-cm solution. J. Geophys. Res., 99, 24 555–24 564. Cooper, M., and K. Haines, 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101, 1059–1077. Courtier, P., 1997: Variational methods. J. Meteor. Soc. Japan, 75, 211–218. De Mey, P., and M. Benkiran, 2002: A multi-variate reduced-order optimal interpolation method and its application to the Medi- terranean basin-scale circulation. Ocean Forecasting: Concep- tual Basis and Applications, N. Pinardi and J. D. Woods, Eds., Springer-Verlag, 281–306. Di Pietro, P., and S. Masina, 2009: The CMCC-INGV Global Ocean Data Assimilation System (CIGODAS). CMCC Research Pa- per 0072, 39 pp. [Available online at http://www.cmcc.it.] Dobricic, S., 2005: New mean dynamic topography of the Medi- terranean calculated from assimilation system diagnostics. Geophys. Res. Lett., 32, L11606, doi:10.1029/2005GL022518. ——, and N. Pinardi, 2008: An oceanographic three-dimensional assimilation scheme. Ocean Modell., 22, 89–105. ——, ——, M. Adani, C. Fratianni, A. Bonazzi, and V. Fernandez, 2008: Daily oceanographic analyses by the Mediterranean basin scale assimilation system. Ocean Sci., 3, 149–157. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022. Fischer, M., M. Flu¨ gel, and M. Ji, 1997: The impact of data as- similation on ENSO simulations and predictions. Mon. Wea. Rev., 125, 819–829. Fofonoff, N. P., 1985: Physical properties of seawater: A new sa- linity scale and equation of state of seawater. J. Geophys. Res., 90, 3332–3342. ——, and R. C. Millard Jr., 1985: Algorithms for computation of fundamental properties of seawater. UNESCO Marine Sci- ence Tech. Paper 44, 53 pp. Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 3–15. Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158–175. Ivchenko, V. O., S. Danilov, D. Sidorenko, J. Schro¨ ter, M. Wenzel, and D. L. Aleynik, 2008: Steric height variability in the Northern Atlantic on seasonal and interannual scales. J. Geo- phys. Res., 113, C11007, doi:10.1029/2008JC004836. Ji, M. , R. W. Reynolds, and D. W. Behringer, 2000: Use of TOPEX/Poseidon sea level data for ocean analysis and ENSO prediction: Some early results. J. Climate, 13, 216–231. Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp. Kaplan, A., M. A. Cane, D. Chen, D. L. Witter, and R. E. Cheney, 2004: Small-scale variability and model error in tropical Pacific sea level. J. Geophys. Res., 109, C02001, doi:10.1029/2002JC001743. Lee, T., and Coauthors, 2010: Consistency and fidelity of Indonesian- throughflow total volume transport estimated by 14 ocean data assimilation products. Dyn. Atmos. Oceans, 50, 201–223. Le Traon, P. Y., and F. Hernandez, 1992: Mapping the oceanic mesoscale circulation: Validation of satellite altimetry using surface drifters. J. Atmos. Oceanic Technol., 9, 687–698. ——, and F. Ogor, 1998: ERS ½ orbit improvement using TOPEX/ Poseidon: The 2 cm challange. J. Geophys. Res., 103, 8045– 8057. ——, and G. Dibarboure, 1999: Mesoscale mapping capabilities of multiple-satellite altimeter missions. J. Atmos. Oceanic Tech- nol., 16, 1208–1223. ——, P. Gaspar, F. Bouyssel, and H. Makhmara, 1995: Using TOPEX/ Poseidon data to enhance ERS-1 orbit. J. Atmos. Oceanic Tech- nol., 12, 161–170. ——, F. Nadal, and N. Ducet, 1998: An improved mapping method of multi-satellite altimeter data. J. Atmos. Oceanic Technol., 15, 522–534. Leuliette, E. W., and L. Miller, 2009: Closing the sea level rise budget with altimetry, Argo and GRACE. Geophys. Res. Lett., 36, L04608, doi:10.1029/2008GL036010. Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955– 2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155. Lorenc, A., 1981: A global three-dimensional multivariate statis- tical interpolation scheme. Mon. Wea. Rev., 109, 701–721. Madec, G., P. Delecluse, M. Imbard, and C. Le´ vy, 1998: OPA 8.1 ocean general circulation model reference manual. Note du Poˆ le de Mode´ lisation 11, Institut Pierre-Simon Laplace, 91 pp. Masina, S., P. Di Pietro, A. Storto, S. Dobricic, A. Alessandri, and A. Cherchi, 2010: Re-analysis in the global ocean at CMCC- INGV: Examples and applications. Mercator Ocean Quarterly Newsletter, No. 36, GIP Mercator Ocean, Ramonville St. Agne, France, 28–38. [Available online at http://www.mercator-ocean. fr/documents/lettre/lettre_36_en.pdf.] Mitchell, H. L., and R. Daley, 1997: Discretization error and signal/ error correlation in atmospheric data assimilation. II: The effect of unresolved scales. Tellus, 49A, 701–708. Montmerle, T., F. Rabier, and C. Fischer, 2007: Relative impact of polar-orbiting and geostationary satellite radiances in the ALADIN/France numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 655–671. Oke, P. R., and P. Sakov, 2008: Representation error of oceanic observations for data assimilation. J. Atmos. Oceanic Tech- nol., 25, 1004–1017. Pascual, A., C. Boone, G. Larnicol, and P.-Y. Le Traon, 2009: On the quality of real-time altimeter gridded fields: Comparison with in situ data. J. Atmos. Oceanic Technol., 26, 556–569. Pinardi, N., and Coauthors, 2003: The Mediterranean Ocean Fore- casting System: First phase of implementation (1998–2001). Ann. Geophys., 21, 3–20. Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948. Rio, M. H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in-situ mea- surements and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226. Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general cir- culation models. J. Geophys. Res., 105, 23 927–23 942. Schiller, A., P. R. Oke, G. B. Brassington, M. Entel, R. Fiedler, D. A. Griffin, and J. V. Mansbridge, 2008: Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Prog. Oceanogr., 76, 334–365. Segschneider, J., D. L. T. Anderson, and T. N. Stockdale, 2000: Towards the use of altimetry for operational seasonal fore- casting. J. Climate, 13, 3115–3138. Storto, A., and F. T. Tveter, 2009: Assimilating humidity pseudo- observations derived from the cloud profiling radar aboard CloudSat in ALADIN 3D-Var. Meteor. Appl., 16, 461–479. Tapley, B. D., D. P. Chambers, S. Bettadpur, and J. C. Ries, 2003: Large scale ocean circulation from the GRACE GGM01 ge- oid. Geophys. Res. Lett., 30, 2163, doi:10.1029/2003GL018622. Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012. Vidard, A., M. Balmaseda, and D. Anderson, 2009: Assimilation of altimeter data in the ECMWF Ocean Analysis System 3. Mon. Wea. Rev., 137, 1393–1408. Vossepoel, F. C., and D. W. Behringer, 2000: Impact of sea level assimilation on salinity variability in the western equatorial Pacific. J. Phys. Oceanogr., 30, 1706–1721. Wijffels, S. E., J. Willis, C. M. Domingues, P. Barker, N. J. White, A. Gronell, K. Ridgway, and J. A. Church, 2008: Changing ex- pendable bathythermograph fall rates and their impact on esti- mates of thermosteric sea level rise. J. Climate, 21, 5657–5672. Zheng, F., J. Zhu, and R.-H. Zhang, 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34, L13611, doi:10.1029/2007GL030451.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.obiettivoSpecifico4.6. Oceanografia operativa per la valutazione dei rischi in aree marineen
dc.description.obiettivoSpecifico5.4. Banche dati di geomagnetismo, aeronomia, clima e ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorStorto, A.en
dc.contributor.authorDobricic, S.en
dc.contributor.authorMasina, S.en
dc.contributor.authorDi Pietro, P.en
dc.contributor.departmentCentro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.departmentCentro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextmixedopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNR-Ismar-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.orcid0000-0002-4068-1256-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Storto_et_al_2011_MWR.pdfVersion AMS in the MWR12.8 MBAdobe PDF
slaimpact.pdfPost print version of the printed article8.36 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

47
checked on Feb 10, 2021

Page view(s) 20

321
checked on Apr 20, 2024

Download(s) 20

389
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric