Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7572

Authors: Currenti, G.*
Napoli, R.*
Del Negro, C.
Title: Toward a realistic deformation model of the 2008 magmatic intrusion at Etna from combined DInSAR and GPS observations
Title of journal: Earth and Planetary Science Letters
Series/Report no.: /312 (2011)
Issue Date: Dec-2011
DOI: 10.1016/j.epsl.2011.09.058
Keywords: Magmatic Intrusion
Numerical simulation
DInSAR data
GPS data
Abstract: The combination of (i) DInSAR data, capable of observing deformation pattern at a spatial resolution unachievable with other sparse geodetic measurements, (ii) continuous GPS data, able to provide temporal constraints on source evolution, and (iii) numerical modeling procedures, appropriate to consider a non-uniform opening distribution of a source embedded in a 3D heterogeneous medium, allowed us to infer a complex and realistic deformation model of the magmatic intrusion that occurred in the northern flank of Etna on 13 May 2008. Numerical modeling of ground deformation data defines a near-vertical dyke intruded for 2.5 km starting from a depth of 1400 m asl right below the summit craters and reaching shallow crust level in the northern flank. From the estimated opening distribution of the propagating magma-filled crack, which reached a maximum value of about 2 m, a volumetric expansion of crustal rocks of about 5.3 x 10^6 m^3 was obtained. Also, we clarified the temporal evolution of the northward magmatic intrusion, which lasted just over 5 hours with an initial magma propagation velocity of about 1.2 km/h, and decreased to about 0.24 km/h as the driving pressure lowered due to the effusive activity started at southern vents.
Appears in Collections:04.08.06. Volcano monitoring
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Currenti et al EPSL 2011.pdf1.34 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA