Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7559
DC FieldValueLanguage
dc.contributor.authorallSeccia, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallChiarabba, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallDe Gori, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBianchi, I.; Institut für Meteorologie und Geophysik, Universität Wien, Vienna, Austriaen
dc.contributor.authorallHill, D.; U.S. Geological Survey, Menlo Park, California, USAen
dc.date.accessioned2012-01-26T08:32:16Zen
dc.date.available2012-01-26T08:32:16Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7559en
dc.description.abstractWe present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic Vp model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high‐velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low‐velocity anomaly (8%–10 % reduction in Vp) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low‐velocity volume (∼5% reduction in Vp and as much as 40% reduction in Vs) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low‐velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/116 (2011)en
dc.subjectSeismic Tomographyen
dc.subjectLong Valley Calderaen
dc.subjectReceiver Functionen
dc.titleEvidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysisen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12314en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2011/2011JB008471.shtmlen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.identifier.doi10.1029/2011JB008471en
dc.relation.referencesBailey, R.A., 1976, On the mechanisms of postsubsidence central doming and volcanism in resurgent cauldrons [abs]: Geological Society of America, Abstracts with Programs, 8, 5, 567. Battaglia, M., Roberts, C., Segall, P., 1999, Magma intrusion beneath Long Valley caldera confirmed by temporal changes in gravity, Science, 285, 2119– 2122.Battaglia, M., Segall, P., Roberts, C., 2003b, The mechanics of unrest at Long Valley caldera, California: 2. Constraining the nature of the source using geodetic and micro-gravity data: J. Volcanol. Geotherm. Res., 127, 219– 245. Benz, H.M., Chouet, B.A., Dawson, P.B., Lahr, J.C., Page, R.A., Hole, J.A., 1996. Three-dimensional P and S wave velocity structure ofRedoubt Volcano, Alaska, J. Geophys. Res., 101, 8111-8128. Chiarabba, C., Amato, A., Boschi, E., Barberi, F., 2000. Recent seismicity and tomographic modeling of the Mt. Etna plumbing system, J. Geophys. Res., 105, 10923-10938. Chiarabba, C., Moretti, M., 2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography, Terra Nova, 18, 6, 373-379. Chiarabba, C., Evans J.R.. and Amato, A., 1995, Variations on the NeHT high-resolution tomography method: A test of technique and results for Medicine Lake Volcano, Northern California: J. Geophys. Res., 100, 4035-4052. Chmielowski, J., Zandt, G. & Haberland, C., 1999. The central andean Altopiano–Puna magma body, Geophys. Res. Lett., 26(6), 783–786. Dawson, P.B., Evans, J.R., and Iyer, H.M., 1990, Teleseismic tomography of the compressional wave velocity structure beneath the Long Valley region, California, J. Geophys. Res., 95, 7, 11 021– 11 050. Darbyshire, F.A., Priestley, K.F., White, R.S., Stefansson, R.,Gudmundsson, G.B. & Jakobsdottir, S.S., 2000. Crustal structure of central and northern Iceland from analysis of teleseismic receiver functions, Geophys. J. Int., 143, 1633–184. De Gori, P., Chiarabba, C., and Patanè, D., 2005, Qp structure of Mt. Etna: constraints for the physics of the plumbing system, J. Geophys. Res., 110, B05303, doi:10.1029/2003JB002875. Di Bona, M., 1998. Variance estimate in frequency-domain deconvolution for teleseismic receiver function computation, Geophys. J. Int., 134, 634–646.Di Stefano, R., Chiarabba, C., 2002, Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107., 2278–2292. Eberhart-Phillips, D.,1990, Three-dimensional velocity structure in the Coalinga region, California: J. Geophys. Res., 95, 15343–15363. Eberhart-Phillips, D., 1993, Local earthquake tomography: Earthquake source regions. In: Iyer, H.M., Hirahara, K. (Eds.): Seismic Tomography: Theory and Practice. Chapman and Hall, New York, p. 613–643. Eberhart-Phillips, D. and Reyners, M., 1997, Continental subduction and three dimensional crustal structure: the northern South Island, New Zealand: J. Geophys. Res., 102, 11,843–11,861. Ellsworth, W.L., Koyanagi, R.Y., 1977. Three-dimensional crust and mantle structure of Kilauea volcano, J. Geophys. Res., 82, 5379-5394. Evans, J.R., Zucca, J.J., 1993 Active-source high resolution (NeHT) tomography: Velocitya and Q, in SeismicT omography: Theory and Practice, edited by H. M. Iyer and K. Hirahara, pp. 695-732, Chapman and Hall, New York. Fischer M., Roller K., Kuster M., Stockhert B., McConnell V.S., 2003, Open fissure mineralization at 2600 m depth in Long Valley exploratory well (California) – insight into history of the hydrothermal system, J. Volcanol. Geotherm. Res.,127, 347–363. Foulger, G.R, Julian B. R., Pitt A. M., and Hill D. P., 2003, Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain: J. Geophys. Res., 108, B3, 2147, doi:10.1029/2000JB000041 Frederiksen, A. W., and M. G. Bostock, 2000. Modeling teleseismic waves in dipping anisotropic structures, Geophys. J. Int., 141, 401–412. Hammond , W.C., and Humphreys E. D., 2000, Upper mantle seismic wave velocity: Effects of realistic partial melt geometries: J. Geophys. Res., 105, 10,975-10,986.Hildreth, W., 2004, Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems: Journal of Volcanology and Geothermal Research, 136, 169–198. Hill, D.P., 1976, Structure of Long Valley Caldera, California, from a seismic refraction experiment: J. Geophys. Res., 81, 5, 745-753. Hill, D. P., 1992 Temperatures at the base of the seismogenic crust beneath Long Valley caldera, California, and the Phlegrean Fields caldera, Italy, in P. Gasparini and R. Scarpa eds., Volcanic Seismology: Springer-Verlag., p. 431-460. Hill, D. P. & Prejean, S., 2005, Volcanic unrest beneath Mammoth Mountain, California: J. Volcanol. Geotherm. Res., 146, 257–283. Hill, D.P., 2006, Unrest in Long Valley Caldera, California, 1978–2004: Geological Society, London, Special Publications, 2006, 269, 1-24. Iyer, H.M., Evans, J.R., Dawson, P.B., Stauber, D.A. and Achauer, U., 1990, Differences in magma storage in different vocanic environment as revealed by seismic tomography: silicic volcanic center and subduction-ralated volcanoes: Magma Transport and Storage, edited by M.P. Ryan, John Wiley and Sons. Johnston, M.J.S. , Prejean, S.G. and Hill, D.P., 2004, Triggered Deformation and Seismic Activity under Mammoth Mountain in Long Valley Caldera by the 3 November 2002 Mw 7.9 Denali Fault Earthquake: Bulletin of the Seismological Society of America, 94, 6B, S360-S369; doi: 10.1785/0120040603. Kissling, E., 1988, Geotomography with local earthquake data: Reviews of Geophysics, 26, 659–698. Langbein, J.O., Hill, D.P., Parker, T.N. & Wilkinson, S.K., 1993, An episode of reinflation of Long Valley Caldera, eastern California: 1989-1991: J. Geophys. Res., 98, B9, 15 851-15 870. Langbein, J.O., 2003, Deformation of the Long Valley Caldera, California: inferences from measurements from 1988 to 2001, J. Volcanol. Geotherm. Res., 127, 247–267.Lahr, J.C., 1989, HYPOELLIPSE/vers. 2.00: a computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern: U.S. Geological Survey Open-File Rep., 89-116, pp. 92. Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749–4762. Lees, J.M., 1992 The magma system of Mount St. Helens: Non linear high resolution P-wave tomography, J. Volcanol. Geotherm. Res., 53, 103-116. Mavko, G.M., 1980, Velocity and attenuation in partially molten rocks: J. Geophys. Res., 85, 5173- 5189. Menke, W., 1989, Geophysical data analysis: Discrete inverse theory: Int. Geophys. Ser., 45, 285 pp., Academic, San Diego, California. Michelini, A., and T. V. McEvilly (1991), Seismological studies at Parkfield, I, Simultaneous inversion for velocity structure and hypocentres using cubic b-splines parameterization, Bull. Seismol. Soc Am., 81, 524–552. Mori, J., Eberhart-Phillips, D., Harlow, D., 1996. Threedimensional velocity structure at Mount Pinatubo: Resolving magma bodies and earthquake hypocenters, in Fire and Mud, Eruptions and Lahars of Mount Pinatubo, Philippines, edited by C.G. Newhall and R.S. Punoungbayan, 371-382, Univ. of Washington Press, Seattle. Nakamichi, H., Tanaka, S. & Hamaguchi, H., 2002. Fine s wave velocity structure beneath iwate volcano, northeastern japan, as derived from receiver functions and travel times, J. Volc. Geotherm. Res., 116, 235–255. O’Connel, R.J, Budiansky, B., 1977, Viscoelastic properties of fluid-saturated cracked solids: J. Geophys. Res., 82, 5779-5736. Ponko, S.C., and Sanders, C.O., 1994, Inversion for P and S wave attenuation structure, Long Valley Caldera, California: J. Geophys. Res., 99, B2, 2619-2636.Prejean, S., Ellsworth, W., Zoback, M. & Walhouser, F., 2002, Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversion: J. Geophys. Res., 107, B12, 2355, doi:10.1029 JB001168. Pribnow D.F.C., Schutze C., Hurter S.J., Flechsig C., Sass J.H., 2003, Fluid flow in the resurgent dome of Long Valley caldera: Implications from thermal data and deep electrical sounding, J. Volcanol. Geotherm. Res., 127, 329–345. Romero, A.E., JR., McEvilly, T.V., Majer, E.L., and Michelini, A., 1993, Velocity structure of the Long Valley Caldera from the inversion of local earthquake P and S travel times: J. Geophys. Res., 98, B11, 19,869-19,880. Sackett P.C., McConnell V.S., Roach A.L., Priest S.S., John H. Sass J.H., 1999, Long Valley Coring Project, 1998 -- preliminary stratigraphy and images of recovered core, USGS Open-File Report, 99-158, 1 CD. Sambridge, M. (1999a), Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space, Geophys. J. Int., 138, 479–494. Sambridge, M. (1999b), Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble, Geophys. J. Int., 138, 727–746. Sanders, C.O., Ponko, S.C., Nixon, L.D., and Schwartz, E.A., 1995, Seismological evidence for magmatic and hydrothermal structure in Long Valley Caldera from local earthquake attenuation and velocity tomography: J. Geophys. Res., 100, B5, 8311-8326. Sato, H., Sacks, I.S., Murase, T., 1989, The use ogf laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: Comparison with heat flow and electrical conductivity studies, J. Geophys. Res., 94, 5689-5704. Steck, L., and W.A. Prothero, 1994, Crustal Structure beneath Long Valley caldera from modeling of teleseismic P-wave polarizations and Ps converted phases: J. Geophys. Res., 99, 6881-6898.Stroujkova, A.F., Malin, P.E., 2000, A magma mass beneath Casa Diablo? Further evidence from reflected seismic waves, Bull. Seism. Soc. Am., 90(2), 500-511 Taylor M.A.J., Singh S.C., 2002, Composition and microstructure of magma bodies from effective medium theory, Geophys. J. Int., 149, 15-21. Tizzani P., Battaglia M., Zeni G., Atzori S., Berardino P., Lanari, R., 2009, Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements, Geology, 37, 63 - 66. Toomey, D.R. and Foulger, G.R., 1989, Tomographic inversion of local earthquakes data from the Hengill-Grendsalur Central Volcano Complex, Iceland: J. Geophys. Res., 94, 17,497–17,510. Thurber, C.H., 1984. Seismic detection of the summit magma complex of Kilauea volcano, Hawaii, Science, 223, 165-167. Um J. & Thurber C.H., 1987, A fast algorithm for two-point seismic ray tracing: Bull. Seism. Soc. Am., 77, 972-986. Waldhauser F, and D. P. Schaff, 2008, Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods, J. Geophys. Res., 113, doi:10.1029/2007JB005479. Weiland, C.M., Steck, L.K., Dawson, P.B. & Korneev, V.A., 1995, Nonlinear teleseismic tomography at Long Valley Caldera, using three dimensional minimum travel time ray tracing: J. Geophys. Res., 100, B10, p. 20,379–20,390. Wessel, P., and W. H. F. Smith, 1991, Free software helps map and display data, Eos Trans. AGU, 72, 441.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSeccia, D.en
dc.contributor.authorChiarabba, C.en
dc.contributor.authorDe Gori, P.en
dc.contributor.authorBianchi, I.en
dc.contributor.authorHill, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentInstitut für Meteorologie und Geophysik, Universität Wien, Vienna, Austriaen
dc.contributor.departmentU.S. Geological Survey, Menlo Park, California, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptGeological Sciences Division, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK-
crisitem.author.orcid0000-0002-8111-3466-
crisitem.author.orcid0000-0001-8160-0849-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011JB008471.pdfpdf article3.59 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

30
checked on Feb 7, 2021

Page view(s)

141
checked on Apr 20, 2024

Download(s)

46
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric